COVID-19 Living Evidence Synthesis #10 (Version 10.9: 17 August 2022) ## Appendix 1: Summary of Included Studies Note: Newly added studies in blue, updated studies in green. | Study
ID | First
author | Location | Population of interest | Total sample size | Vaccines
included in
report | Research questions | Outcomes included in report | Maximum
Number
of follow-
up time
points | VOC
specific
data
included
in report | |-------------|------------------------|----------|-----------------------------------|--|---------------------------------------|--------------------|--|--|--| | 01A-3 | Andrews ¹ | UK | Persons
aged >16 years | 52,333,72 | BNT162b2
AZD1222
(ChAdOx1) * | Q1 | Symptomatic
cases
Hospitalisations
Deaths | 2 | Delta | | 02B-3 | Bedston ² | UK | HCWs aged
≥16 years | 82,959 | BNT162b2 | Q1 | Any cases | 3 | N/A | | 03B-3 | Britton ³ | USA | Adults aged
≥20 years | 1,634,271 | BNT162b2
mRNA-1273
Ad26.CoV2.S* | Q1 | Symptomatic cases | 6 | Delta | | 04B-3 | Bruxvoort ⁴ | USA | KPSC
members aged
≥18 years | 352,878
unvaccinated
and 352,878
vaccinated | mRNA-1273 | Q1 | Any cases | 3 | Delta | | 05B-3 | Buchan ⁵ | Canada | Adults aged >18 years | 134,435 | BNT162b2
Ad26.CoV2.S | Q1 | Symptomatic cases | 3 | Delta
Omicron | | | | | | | AZD1222
(ChAdOx1)
mRNA-1273 | | | | | |-------|----------------------------------|-----------------|---|------------|--|----|-------------------------------|---|-------| | 06C-3 | Cerqueira-
Silva ⁶ | Brazil | Adults aged >18 years | 30,910 | BNT162b2,
AZD1222
(ChAdOx1)
Ad26.CoV2.S* | Q1 | Symptomatic cases | 1 | N/A | | 07C-2 | Chemaitell y ⁷ | Qatar | Persons aged
≥12 years in
Qatar | 494,859 | BNT162b2 | Q1 | All cases | 4 | Delta | | 08D-2 | De Gier ⁸ | Netherlan
ds | Persons aged ≥12 year in a nationwide registry of COVID-19 hospitalizations | 15,571 | BNT162b2
Ad26.CoV2.S
AZD1222
(ChAdOx1)
mRNA-1273 | Q1 | Hospitalisations | 2 | Delta | | 09E-2 | El Sahly ⁹ | USA | Adults aged
≥18 years with
high risk for
Covid-19 | 28,451 | mRNA-1273 | Q1 | Symptomatic cases | 1 | N/A | | 10F-3 | Florea ¹⁰ | USA | KPSC
members
aged >18 years | 1,854,008 | mRNA-1273 | Q1 | All cases
Hospitalisations | 2 | N/A | | 11K-3 | Katikireddi | Scotland | Adults aged >18 years | 2,534,527 | AZD1222
(ChAdOx1) | Q1 | Symptomatic cases | 3 | N/A | | 12L-3 | Lin ¹² | USA | Adults aged
≥18 years in | 10,600,823 | BNT162b2
Ad26.CoV2.S | Q1 | All cases
Hospitalisations | 3 | N/A | | | | | North Carolina | | mRNA-1273 * | | Deaths | | | |-------|---------------------------------|----------------|----------------------------------|-------------|--|----|--|---|-------| | 13L-3 | Lytras ¹³ | Greece | Persons aged
≥15 years | 9,200,000 | BNT162b2
Ad26.CoV2.S
AZD1222
(ChAdOx1)
mRNA-1273 * | Q1 | Deaths | 1 | N/A | | 14M-3 | Machado ¹⁴ | Portugal | Adults aged
≥65 years | 471,439,909 | BNT162b2
mRNA-1273 | Q1 | Symptomatic
cases
Hospitalisations
Deaths | 1 | N/A | | 15N-3 | Nordstro
m ¹⁵ | Sweden | Adults aged >18 years in Sweden | 1,684,958 | BNT162b2
AZD1222
(ChAdOx1)
mRNA-1273* | Q1 | All cases | 3 | N/A | | 16P-3 | Petras ¹⁶ | Prague | Hospital staff
aged ≥18 years | 11,443 | BNT162b2
Ad26.CoV2.S
AZD1222
(ChAdOx1)
mRNA-1273 | Q1 | All cases | 1 | N/A | | 17P-3 | Poukka ¹⁷ | Finland | HCWs aged
16-69 years | 427,905 | BNT162b2
AZD1222
(ChAdOx1)
mRNA-1273 | Q1 | All cases
Hospitalisations | 1 | Delta | | 18R-4 | Robles-
Fontan ¹⁸ | Puerto
Rico | Persons aged ≥12 years | 88,044 | BNT162b2
Ad26.CoV2.S
mRNA-1273* | Q1 | All cases
Hospitalisations
Deaths | 1 | N/A | | 19R-3 | Rosenberg
19 | USA | Adults aged
≥18 years in | 8,690,825 | BNT162b2
mRNA-1273 | Q1 | All cases
Hospitalisations | 1 | N/A | | | | | New York
State | | AZD1222
(ChAdOx1) * | | | | | |-------|----------------------------|--------|--|---|--|-------------|-------------------------------|---|------------------| | 20S-5 | Skowronsk i ²⁰ | Canada | Adults
aged >18 years
in BC and QC | 2,846,077
(872,440 BC;
1,973,637
QC) | BNT162b2
AZD1222
(ChAdOx1)
mRNA-1273* | Q1 | All cases
Hospitalisations | 6 | Delta | | 21T-3 | Tartof ²¹ | USA | KPSC
members
aged >18 years | 3,436,957 | BNT162b2 | Q1 | All cases
Hospitalisations | 4 | N/A | | 22T-1 | Thomas ²² | Global | Persons aged ≥16 years | 44,047 | BNT162b2 | Q1 | All cases | 1 | N/A | | 23T-1 | Thompson 23 | USA | Adults aged
≥50 years | 41,552
hospitalisatio
ns + 21,522
ED visits
from 187
hospitals | BNT162b2
Ad26.CoV2.S
mRNA-1273 | Q1 | Hospitalisations | 1 | N/A | | 25F-3 | Ferdinands | USA | Adults aged
≥18 years | 241,204 | BNT162b2
mRNA-1273 | Q1 and Q2-1 | Hospitalisations | 2 | Delta
Omicron | | 26H-3 | Hall ²⁵ | UK | Adult HCWs
aged ≥18 years | 35,768 | BNT162b2
Ad26.CoV2.S
AZD1222
(ChAdOx1)
mRNA-1273 | Q1 | All cases | 2 | N/A | | 27C-3 | Chemaitell y ²⁶ | Qatar | Persons aged
≥12 years in
Qatar | 84,884 | BNT162b2 | Q1 and Q2-1 | Symptomatic cases | 9 | Omicron | | 28A-4 | Andrews ²⁷ | England | Adults aged
≥18 years | 2,663,549 | BNT162b2
AZD1222(ChA
dOx1)
mRNA-1273* | Q 1 | Symptomatic cases | 2 | Delta
Omicron | |-------|-----------------------------------|---------|---------------------------|------------|--|-------------|--|---|------------------| | 29C-4 | Castillo ²⁸ | France | Adults aged
≥50 years | 1,296,351 | BNT162b2
Ad26.CoV2.S
AZD1222
(ChAdOx1)
mRNA-1273 | Q1 | Symptomatic
cases
Hospitalisations | 3 | Delta | | 30S-4 | Syed ²⁹ | Qatar | Persons aged ≥12 years | 1,241,501 | BNT162b2
mRNA-1273* | Q1 | All cases | 2 | N/A | | 31G-5 | Glatman-
Freedman ³ | Israel | Persons aged
≥16 years | 1,561,812 | BNT162b2 | Q2-1 | All cases
Hospitalisations
Deaths | 3 | Omicron | | 32H-5 | Hansen ³¹ | Denmark | Persons aged ≥12 years | 3.090,833 | BNT162b2
mRNA-1273* | Q1 and Q2-1 | All cases
Hospitalisations | 1 | Omicron | | 33H-9 | Horne ³² | England | Adults aged
≥18 years | 13,841,107 | BNT162b2
AZD1222
(ChAdOx1)* | Q1 | All cases
Hospitalisations
Deaths | 3 | N/A | | 34K-6 | Kirsebom ³ | England | Adults aged
≥18 years | 626,148 | BNT162b2
AZD1222(ChA
dOx1)
mRNA-1273* | Q2-1 | Symptomatic
cases
Hospitalisations | 1 | Omicron | | 35L-5 | Lauring ³⁴ | USA | Adults aged
≥18 years | 11,690 | BNT162b2
mRNA-1273* | Q1 | Hospitalisations | 1 | N/A | | 37N-5 | Nyberg ³⁵ | England | Adults aged
≥20 years | 1,191,526 | BNT162b2 | Q1 and Q2-1 | Hospitalisations
Deaths | 2 | Delta
Omicron | | | | | | | AZD1222(ChA
dOx1)
mRNA-1273* | | | | | |-------|-----------------------------------|------------------------|--------------------------|--|--|-------------|-------------------------------|---|------------------| | 38S-5 | Starrfelt ³⁶ | Norway | Adults aged
≥18 years | 4,301,995 | BNT162b2
AZD1222(ChA
dOx1)
mRNA-1273* | Q1 | All cases
Hospitalisations | 3 | N/A | | 39S-5 | Stowe ³⁷ | England | Adults aged
≥18 years | 409,985 | BNT162b2
AZD1222(ChA
dOx1)
mRNA-1273* | Q1 and Q2-1 | Hospitalisations | 1 | Delta
Omicron | | 40G-5 | Gram ³⁸ | Denmark | Persons aged ≥12 years | 7,351,244 | BNT162b2
mRNA-1273 | Q1 and Q2-1 | All cases
Hospitalisations | 1 | Delta
Omicron | | 41L-5 | Lind ³⁹ | USA | Persons aged ≥5 years | 130,073 | BNT162b2
mRNA-1273 | Q1 | All cases | 1 | Omicron | | 42B-6 | Baum ⁴⁰ | Finland | Adults aged
≥70 years | 897,932 | BNT162b2
AZD1222(ChA
dOx1)
mRNA-1273 | Q1 | Hospitalisations | 1 | Delta
Omicron | | 43C-6 | Cerqueira-
Silva ⁴¹ | Brazil | Adults aged
≥18 years | 899,050
individuals
(918,219
tests) | BNT162b2
AZD1222(ChA
dOx1) | Q1 | All cases | 1 | Omicron | | 44C-6 | Cerqueira-
Silva ⁴² | Brazil and
Scotland | Adults aged
≥18 years | 4,590,259
individuals
(4,653,517
tests) | BNT162b2
mRNA-1273 | Q2-1 | All cases | 1 | Omicron | | 45G-6 | Gray ⁴³ | South
Africa | Adults aged
≥18 years | 162,637 | BNT162b2
Ad26.COV2.S
mRNA-1273 | Q1 | Hospitalisation | 2 | Omicron | |-------|----------------------------|---------------------------------|--|---|--------------------------------------|------|-------------------|---|---------| | 46K-6 | Kirsebom ⁴ | England | Adults aged
≥40 years | 10,281,119 | BNT162b2,
ChAdOx1-S,
mRNA-1273 | Q2-1 | Symptomatic cases | 2 | Omicron | | 47N-6 | Ng ⁴⁵ | Singapore | All contact
cases aged 0+
with median
age of 36 years | 8,470 | mRNA-1273
BNT162b2. | Q1 | Contact cases | 3 | Delta | | 48A-7 | Andrejko ⁴⁶ | USA | California
Residents aged
13+ years | 2,238 | mRNA-1273
BNT162b2 | Q1 | All cases | 6 | N/A | | 49C-7 | Carazo ⁴⁷ | Canada
(Quebec) | community-
dwelling
residents
aged
≥12
years | 696,439 | mRNA-1273
BNT162b2 | Q1 | All cases | 2 | Omicron | | 50C-7 | Chemaitell y ⁴⁸ | Qatar | 0 + years-old | 138,182 | BNT162b2 | Q2-1 | All cases | 2 | Omicron | | 51E-7 | El Adam ⁴⁹ | Canada
(British
Columbia) | HCWs within
the WHITE
database aged
≥18 years | 23,794 HCWs
for single-
dose VE
analyses; and
27,602 HCWs
for two-dose
analyses | mRNA-1273
BNT162b2 | Q1 | All cases | 2 | N/A | | 52K-7 | Kissling ⁵⁰ | European countries: Croatia, France, Ireland, the Netherlan ds, Portugal, Romania, Spain, England, and Scotland | Adults aged
≥30 years | 14,282 | BNT162b2
Ad26.CoV2.S
AZD1222
(ChAdOx1)
mRNA-1273 | Q1 | All cases | 3 | Delta | |-------|------------------------------|---|--|--|--|------|---|---|---------| | 55R-7 | Richterma
n ⁵¹ | USA | HCWs | 14.520 | mRNA-1273
BNT162b2 | Q2-2 | All cases | 1 | Omicron | | 56B-8 | Berec ⁵² | Czech
Republic | Overall
population | 7,428,968 valid records of vaccinated and/or SARS-CoV-2 positive persons | BNT162b2
Ad26.CoV2.S
AZD1222
(ChAdOx1)
mRNA-1273 | Q1 | All cases
Hospitalisations
Deaths | 2 | N/A | | 57L-8 | Lyngse ⁵³ | Denmark | Danish
population (0 -
80 years old) | 24,693 primary cases, 53,584 household contacts, 11,631 secondary cases | BNT162b2
Ad26.CoV2.S
AZD1222
(ChAdOx1)
mRNA-1273 | Q1 | All cases | 4 | Delta | | 58C-9 | Cerqueira-
Silva ⁵⁴ | Brazil | Adults aged
≥18 years | 2,471,576 | CoronaVac +
BNT162b2
AZD1222
(ChAdOx1) | Q2-1 and
Q2-2 | All cases Hospitalisations Deaths | 2 | Omicron | |-------|-----------------------------------|----------|-------------------------------|-----------|---|------------------|-----------------------------------|---|---------| | 60S-9 | Suphancha imat ⁵⁵ | Thailand | Thai population, no age limit | 1,460,458 | CoronaVac +
BNT162b2
AZD1222
(ChAdOx1) | Q2-2 | All cases | 1 | Delta | Legend: BC: British Columbia; HCWs: healthcare workers; PCR: Polymerase chain reaction test; QC: Quebec; RCT: randomized controlled trial; USA: United States of America; UK: United Kingdom; HCW: healthcare workers; KPSC: Kaiser permanente Southern California Q1: VE against COVID-19 infections/hospitalizations/deaths change over time (>112 days) in individuals who have received a complete primary COVID-19 vaccine series Q2-1: VE against COVID-19 infections/ hospitalizations/deaths change over time (>84 days) in individuals who have received a complete primary COVID-19 vaccine series plus an additional dose – comparison to unvaccinated Q2-2: OR against COVID-19 infections/ hospitalizations change over time (>84 days) in individuals who have received a complete primary COVID-19 vaccine series plus an additional dose – comparison to those who have only received the primary series ^{*}Data are reported separately by vaccine. ^{\$}Excluded from meta-analyses due to a lack of reporting CIs #### References - 1. Andrews N, Tessier E, Stowe J, et al. Duration of Protection against Mild and Severe Disease by Covid-19 Vaccines. N Engl J Med. 2022;386(4):340-350. doi:10.1056/NEJMoa2115481 - 2. Bedston S, Akbari A, Jarvis CI, et al. COVID-19 vaccine uptake, effectiveness, and waning in 82,959 health care workers: A national prospective cohort study in Wales. *Vaccine*. 2022;40(8):1180-1189. doi:10.1016/j.vaccine.2021.11.061 - 3. Britton A, Fleming-Dutra KE, Shang N, et al. Association of COVID-19 Vaccination With Symptomatic SARS-CoV-2 Infection by Time Since Vaccination and Delta Variant Predominance. *JAMA*. Published online February 14, 2022. doi:10.1001/jama.2022.2068 - 4. Bruxvoort KJ, Sy LS, Qian L, et al. Effectiveness of mRNA-1273 against delta, mu, and other emerging variants of SARS-CoV-2: test negative case-control study. *BMJ*. 2021;375:e068848. doi:10.1136/bmj-2021-068848 - Buchan SA, Chung H, Brown KA, et al. Effectiveness of COVID-19 vaccines against Omicron or Delta symptomatic infection and severe outcomes. Published online January 28, 2022:2021.12.30.21268565. doi:10.1101/2021.12.30.21268565 - Cerqueira-Silva T, Andrews JR, Boaventura VS, et al. Effectiveness of CoronaVac, ChAdOx1 nCoV-19, BNT162b2, and Ad26.COV2.S among individuals with previous SARS-CoV-2 infection in Brazil: a test-negative, case-control study. *Lancet Infect Dis.* 2022;22(6):791-801. doi:10.1016/S1473-3099(22)00140-2 - 7. Chemaitelly H, Tang P, Hasan MR, et al. Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. Epidemiology; 2021. doi:10.1101/2021.08.25.21262584 - 8. de Gier B, Kooijman M, Kemmeren J, et al. COVID-19 Vaccine Effectiveness against Hospitalizations and ICU Admissions in the Netherlands, April-August 2021. Infectious Diseases (except HIV/AIDS); 2021. doi:10.1101/2021.09.15.21263613 - 9. El Sahly HM, Baden LR, Essink B, et al. Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase. N Engl J Med. 2021;385(19):1774-1785. doi:10.1056/NEJMoa2113017 - 10. Florea A, Sy LS, Luo Y, et al. Durability of mRNA-1273 against COVID-19 in the time of Delta: Interim results from an observational cohort study. *Plos One.* Published online April 28, 2022:2021.12.13.21267620. doi:https://doi.org/10.1371/journal.pone.0267824 - 11. Katikireddi SV, Cerqueira-Silva T, Vasileiou E, et al. Two-dose ChAdOx1 nCoV-19 vaccine protection against COVID-19 hospital admissions and deaths over time: a retrospective, population-based cohort study in Scotland and Brazil. *The Lancet.* 2022;399(10319):25-35. doi:10.1016/S0140-6736(21)02754-9 - 12. Lin DY, Gu Y, Wheeler B, et al. Effectiveness of Covid-19 Vaccines over a 9-Month Period in North Carolina. N Engl J Med. 2022;0(0):null. doi:10.1056/NEJMoa2117128 - 13. Lytras T, Kontopidou F, Lambrou A, Tsiodras S. Comparative effectiveness and durability of COVID 19 vaccination against death and severe disease in an ongoing nationwide mass vaccination campaign. *J Med Virol.* Published online June 14, 2022. doi:https://doi-org.lib-ezproxy.concordia.ca/10.1002/jmv.27934 - 14. Machado A, Kislaya I, Rodrigues AP, et al. COVID-19 vaccine effectiveness against laboratory confirmed symptomatic SARS-CoV-2 infection, COVID-19 related hospitalizations and deaths, among individuals aged 65 years or more in Portugal: a cohort study based on data-linkage of national - registries February-September 2021. Published online December 14, 2021:2021.12.10.21267619. doi:10.1101/2021.12.10.21267619 - 15. Nordström P, Ballin M, Nordström A. Risk of infection, hospitalisation, and death up to 9 months after a second dose of COVID-19 vaccine: a retrospective, total population cohort study in Sweden. *The Lancet.* 2022;399(10327):814-823. doi:10.1016/S0140-6736(22)00089-7 - 16. Petráš M, Lesná IK, Večeřová L, et al. The Effectiveness of Post-Vaccination and Post-Infection Protection in the Hospital Staff of Three Prague Hospitals: A Cohort Study of 8-Month Follow-Up from the Start of the COVID-19 Vaccination Campaign (COVANESS). Vaccines. 2022;10(1):9. doi:10.3390/vaccines10010009 - 17. Poukka E, Baum U, Palmu AA, et al. Cohort study of Covid-19 vaccine effectiveness among healthcare workers in Finland, December 2020 October 2021. *Vaccine*. 2022;40(5):701-705. doi:10.1016/j.vaccine.2021.12.032 - 18. Robles-Fontán MM, Nieves EG, Cardona-Gerena I, Irizarry RA. Effectiveness estimates of three COVID-19 vaccines based on observational data from Puerto Rico. *Lancet Reg Health-Am*. 2022;9:100212. - Rosenberg ES, Dorabawila V, Easton D, et al. Covid-19 Vaccine Effectiveness in New York State. N Engl J Med. 2022;386(2):116-127. doi:10.1056/NEJMoa2116063 - 20. Skowronski DM, Setayeshgar S, Febriani Y, et al. Two-Dose SARS-CoV-2 Vaccine Effectiveness with Mixed Schedules and Extended Dosing Intervals: Test-Negative Design Studies from British Columbia and Quebec, Canada. Infectious Diseases (except HIV/AIDS); 2021. doi:10.1101/2021.10.26.21265397 - 21. Tartof SY, Slezak JM, Puzniak L, et al. Effectiveness of a third dose of BNT162b2 mRNA COVID-19 vaccine in a large US health system: A retrospective cohort study. *Lancet Reg Health Am*. Published online February 14, 2022:100198. doi:10.1016/j.lana.2022.100198 - 22. Thomas SJ, Moreira ED, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months. *N Engl J Med.* Published online September 15, 2021:NEJMoa2110345. doi:10.1056/NEJMoa2110345 - 23. Thompson MG, Stenehjem E, Grannis S, et al. Effectiveness of Covid-19 Vaccines in Ambulatory and Inpatient Care Settings. *N Engl J Med.* Published online September 8, 2021:NEJMoa2110362. doi:10.1056/NEJMoa2110362 - 24. Ferdinands JM, Rao S, Dixon BE, et al. Waning 2-Dose and 3-Dose effectiveness of mRNA vaccines against COVID-19–associated emergency department and urgent care encounters and hospitalizations among adults during periods of Delta and Omicron variant predominance—VISION Network, 10 States, August 2021–January 2022. Published online 2022. - 25. Hall V, Foulkes S, Insalata F, et al. Protection against SARS-CoV-2 after Covid-19 Vaccination and Previous Infection. N Engl J Med. 2022;0(0):null. doi:10.1056/NEJMoa2118691 - Chemaitelly H, Ayoub HH, AlMukdad S, et al. Duration of protection of BNT162b2 and mRNA-1273 COVID-19 vaccines against symptomatic SARS-CoV-2 Omicron infection in Qatar. Published online February 8, 2022:2022.02.07.22270568. doi:10.1101/2022.02.07.22270568 - 27. Andrews N, Stowe J, Kirsebom F, et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N Engl J Med. 2022;0(0):null. doi:10.1056/NEJMoa2119451 - 28. Castillo MS, Khaoua H, Courtejoie N.
Vaccine effectiveness and duration of protection against symptomatic and severe Covid-19 during the first year of vaccination in France. Published online March 3, 2022:2022.02.17.22270791. doi:10.1101/2022.02.17.22270791 - 29. Syed MA, A/Qotba HA, Alnuaimi AS. Effectiveness of COVID-19 vaccines. *J Infect.* 2022;0(0). doi:10.1016/j.jinf.2022.02.034 - 30. Glatman-Freedman A, Bromberg M, Hershkovitz Y, et al. Effectiveness of BNT162b2 Vaccine Booster against SARS-CoV-2 Infection and Breakthrough Complications, Israel. *Emerg Infect Dis.* 2022;28(5):948-956. doi:10.3201/eid2805.220141 - 31. Hansen C, Schelde A, Moustsen-Helm I, et al. Vaccine Effectiveness against Infection and COVID-19-Associated Hospitalisation with the Omicron (B.1.1.529) Variant after Vaccination with the BNT162b2 or MRNA-1273 Vaccine: A Nationwide Danish Cohort Study. In Review; 2022. doi:10.21203/rs.3.rs-1486018/v1 - 32. Horne EMF, Hulme WJ, Keogh RH, et al. Waning effectiveness of BNT162b2 and ChAdOx1 covid-19 vaccines over six months since second dose: OpenSAFELY cohort study using linked electronic health records. *BMJ*. Published online July 20, 2022:e071249. doi:10.1136/bmj-2022-071249 - 33. Kirsebom FCM, Andrews N, Stowe J, et al. COVID-19 vaccine effectiveness against the omicron (BA.2) variant in England. *Lancet Infect Dis.* Published online May 2022:S1473309922003097. doi:10.1016/S1473-3099(22)00309-7 - 34. Lauring AS, Tenforde MW, Chappell JD, et al. Clinical severity of, and effectiveness of mRNA vaccines against, covid-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: prospective observational study. *BMJ*. Published online March 9, 2022:e069761. doi:10.1136/bmj-2021-069761 - 35. Nyberg T, Ferguson NM, Nash SG, et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study. *The Lancet.* 2022;399(10332):1303-1312. doi:10.1016/S0140-6736(22)00462-7 - 36. Starrfelt J, Danielsen AS, Buanes EA, et al. Age and Product Dependent Vaccine Effectiveness against SARS-CoV-2 Infection and Hospitalisation among Adults in Norway: A National Cohort Study, July November 2021. Public and Global Health; 2022. doi:10.1101/2022.03.29.22273086 - 37. Stowe J, Andrews N, Kirsebom F, Ramsay M, Bernal JL. Effectiveness of COVID-19 Vaccines against Omicron and Delta Hospitalisation: Test Negative Case-Control Study. Epidemiology; 2022. doi:10.1101/2022.04.01.22273281 - 38. Gram MA, Emborg HD, Schelde AB, et al. Vaccine effectiveness against SARS-CoV-2 infection and COVID-19-related hospitalization with the Alpha, Delta and Omicron SARS-CoV-2 variants: a nationwide Danish cohort study. :32. - 39. Lind ML, Robertson A, Silva J, et al. Effectiveness of Primary and Booster COVID-19 MRNA Vaccination against Infection Caused by the SARS-CoV-2 Omicron Variant in People with a Prior SARS-CoV-2 Infection. Infectious Diseases (except HIV/AIDS); 2022. doi:10.1101/2022.04.19.22274056 - 40. Baum U, Poukka E, Leino T, Kilpi T, Nohynek H, Palmu AA. High vaccine effectiveness against severe Covid-19 in the elderly in Finland before and after the emergence of Omicron. :15. - 41. Cerqueira-Silva T, de Araujo Oliveira V, Paixão ES, et al. Vaccination plus previous infection: protection during the omicron wave in Brazil. *Lancet Infect Dis.* 2022;22(7):945-946. doi:10.1016/S1473-3099(22)00288-2 - 42. Cerqueira-Silva T, Shah SA, Robertson C, et al. Waning of mRNA Boosters after Homologous Primary Series with BNT162b2 or ChadOx1 Against Symptomatic Infection and Severe COVID-19 in Brazil and Scotland: A Test-Negative Design Case-Control Study. *SSRN Electron J.* Published online 2022. doi:10.2139/ssrn.4082927 - Gray G, Collie S, Goga A, et al. Effectiveness of Ad26.COV2.S and BNT162b2 Vaccines against Omicron Variant in South Africa. N Engl J Med. Published online May 4, 2022:NEJMc2202061. doi:10.1056/NEJMc2202061 - 44. Kirsebom F, Andrews N, Sachdeva R, Stowe J, Ramsay M, Bernal JL. Effectiveness of ChAdOx1-S COVID-19 Booster Vaccination against the Omicron and Delta Variants in England. Epidemiology; 2022. doi:10.1101/2022.04.29.22274483 - 45. Ng OT, Koh V, Chiew CJ, et al. Impact of SARS-CoV-2 Vaccination and Paediatric Age on Delta Variant Household Transmission. *Clin Infect Dis.* Published online March 22, 2022:ciac219. doi:10.1093/cid/ciac219 - 46. Andrejko KL, Pry J, Myers JF, et al. Waning of Two-Dose BNT162b2 and MRNA-1273 Vaccine Effectiveness against Symptomatic SARS-CoV-2 Infection Is Robust to Depletion-of-Susceptibles Bias. Epidemiology; 2022. doi:10.1101/2022.06.03.22275958 - 47. Carazo S, Skowronski DM, Brisson M, et al. Protection against Omicron Re-Infection Conferred by Prior Heterologous SARS-CoV-2 Infection, with and without MRNA Vaccination. Infectious Diseases (except HIV/AIDS); 2022. doi:10.1101/2022.04.29.22274455 - 48. Chemaitelly H, Ayoub HH, AlMukdad S, et al. *Duration of MRNA Vaccine Protection against SARS-CoV-2 Omicron BA.1 and BA.2 Subvariants in Qatar.* NATURE COMMUNICATIONS; 2022. doi:10.1101/2022.03.13.22272308 - 49. El Adam S, Zou M, Kim S, Henry B, Krajden M, Skowronski DM. SARS-CoV-2 mRNA Vaccine Effectiveness in Health Care Workers by Dosing Interval and Time Since Vaccination: Test-Negative Design, British Columbia, Canada. *Open Forum Infect Dis.* 2022;9(5):ofac178. doi:10.1093/ofid/ofac178 - 50. Kissling E, Hooiveld M, Martínez-Baz I, et al. Effectiveness of complete primary vaccination against COVID-19 at primary care and community level during predominant Delta circulation in Europe: multicentre analysis, I-MOVE-COVID-19 and ECDC networks, July to August 2021. *Eurosurveillance*. 2022;27(21). doi:10.2807/1560-7917.ES.2022.27.21.2101104 - 51. Richterman A, Behrman A, J Brennan P, O'Donnell JA, K Snider C, H Chaiyachati K. Durability of SARS-CoV-2 mRNA Booster Vaccine Protection Against Omicron Among Health Care Workers with a Vaccine Mandate. *Clin Infect Dis.* 2022;(ciac454). doi:https://doi.org/10.1093/cid/ciac454 - 52. Berec L, Šmíd M, Přibylová L, et al. Protection provided by vaccination, booster doses and previous infection against covid-19 infection, hospitalisation or death over time in Czechia. Adnan M, ed. *PLOS ONE*. 2022;17(7):e0270801. doi:10.1371/journal.pone.0270801 - 53. Lyngse FP, Mølbak K, Denwood M, et al. Effect of vaccination on household transmission of SARS-CoV-2 Delta variant of concern. *Nat Commun.* 2022;13(1):3764. doi:10.1038/s41467-022-31494-y - 54. Cerqueira-Silva T, de Araujo Oliveira V, Paixão ES, et al. Duration of protection of CoronaVac plus heterologous BNT162b2 booster in the Omicron period in Brazil. *Nat Commun.* 2022;13(1):4154. doi:10.1038/s41467-022-31839-7 - 55. Suphanchaimat R, Nittayasoot N, Jiraphongsa C, et al. Real-World Effectiveness of Mix-and-Match Vaccine Regimens against SARS-CoV-2 Delta Variant in Thailand: A Nationwide Test-Negative Matched Case-Control Study. *Vaccines*. 2022;10(7):1080. doi:10.3390/vaccines10071080 #### Appendix 2: Details of meta-analytic procedure Reports were included for meta-analytic review when they met all the following criteria: - 1. Reported vaccine effectiveness (VE), risk ratio (RR), odds risk (OR) or hazard ratio (HR) data, along with corresponding confidence intervals (CIs) - 2. Provided the above with regards to (a) cases, (b) hospitalisations, or (c) deaths due to COVID-19 - 3. Reported data for baseline (0-42 days since second dose of vaccine) and for at least one follow-up time point (≥ 112 days since complete primary series of a vaccine or ≥ 84 days since an additional dose of the vaccine All estimates, and their corresponding CIs, were converted to risk ratios (RRs). RRs were then log-transformed for use in meta-analytic models, and the CIs were used to derive a standard error for each effect size. Random effects models were used to calculate pooled effects, as we anticipated meaningful heterogeneity across studies and group comparisons (e.g., follow-up time points). When data was available, subgroup analyses were computed to examine how patterns of findings varied according to: - 1. Type of vaccine - a) Overall (i.e., any vaccine) - b) mRNA vaccines - i) Moderna (mRNA-1273) - ii) Pfizer-BioNTech (BNT162b2) - c) Any adenovirus - i) AstraZeneca/COVISHIELD (AZD1222/ChAdOx1) - ii) Janssen (Johnson & Johnson: Ad26.COV2.S) - 2. Variants of Concern (VOC): - a) Any variant - b) Omicron All analyses for the current report were computed using the *metafor* package in R (version4.1.2). As of update 10.6 of our review, we used a multi-step procedure to determine which model to report according to the subgroups above. First, when multiple studies were available for a given subgroup (e.g., when examining the effects of any vaccine type on cases), we computed three-level meta-analytic models, nesting effect sizes within studies. These models used the Restricted Maximum Likelihood procedure to obtain estimates. Moderation tests were computed to examine whether vaccine effectiveness (VE) at each follow up time period differed from the two baseline time points (e.g., 0-14 days and 14-42 days for the VE of the primary series). Second, when only a single study was available for a given subgroup, separate random-effects models were used to estimate VE at each time point, treating all cohorts as independent groups. These models were computed using the DerSimonian and Laird procedure. This secondary option is equivalent to the meta-analytic procedure used in older versions of our review (i.e., prior to version 10.6). Third, in cases when multiple studies were available, but the three-level models failed to produce results (e.g., due to model convergence difficulties), the results of random effects models were used instead (as per step 2). This third scenario did not occur for any of the models reported in version 10.6 of our report. When our results tables indicate that moderation was formally tested, the subgroup employed
three-level models. When tables indicate that no moderation was formally tested, the subgroups employed random effects models. ### Imputations used in order to compute meta-analytic models In order to be included in meta-analytic models, each effect size extracted from reports needed to be accompanied by a corresponding standard error (SE). The standard error was always derived from the confidence intervals provided. However, several values were not usable for computation and needed adjustment. Similarly, a few VE point-estimates required adjustments to compute models. The table that follows lists each of the adjustments we applied, along with our rationale. | Pr | oblem Case | Explanation and Solution | |----|---|--| | 1. | Provided CIs were asymmetric (when computed as log RRs). | Because standard errors (SEs) were derived from CIs, asymmetric CIs would produce two competing standard errors (SEs). To resolve this, we calculated the SE implied by both the upper and lower CI, and selected the larger of the 2 SEs for use in models. This represents the more conservative approach (assuming more, rather than less, error in estimates extracted). | | 2. | VE estimates were negative in magnitude (or, equivalently, RRs were >1.0 in magnitude). Applies to point estimates and CIs. | If the original metric was an RR, OR, or HR, this was not a problem, and the estimate could be used directly in analyses. When the original metric was a VE, we needed to take into account the calculating VEs typically assumes a positive number, where: VE = (1-RR)*100 When an RR is less than 1, the plausible range of VE is 0% to 100%. If we extend the logic of VE to the negative range, then we could assume that VE equal to -100% represents non-vaccination offering the highest protection. From this extension, VE can have a range of -100% to 100%. However, VE is negative, its relation to RR would need to be adjusted as the RR metric is unbounded in the positive range (ranges 0 to infinity). Consequently, when VE is negative (or RR>1), we used the following formulas to convert between the two metrics. A negative VE is assumed to reflect the following formula: VE = (-1 + 1/RR)*100 RR = 1 / (VE/100 +1) | | 3. | VE point estimate was 100%, or RR point estimate was 0. | Both these cases make it impossible to calculate a log-transformed RR (as the transformation cannot be applied to a value of zero). We therefore imputed VE estimates of 100% with a VE of 99.5% (equivalent RR would be .005). The choice of 99.5% stemmed from a recognition that VE is often reported without decimals, and that a value of 99.5% would be likely to be rounded up. This decision is more conservative than using a value between 99.5 and 100). | | 4. | Upper CI was equal to VE = 100% or RR = 0. | Causes a similar problem as when the point estimate is $VE = 100\%$. If a lower CI was available, we used that CI instead to derive the SE. | | | | Otherwise, we imputed a value of VE = 99.9% (or RR = .001). This allowed us to derive SEs while recognizing that the value may approach 100%. | |----|---|--| | 5. | Lower CI is $VE = 100$ or $RR = 0$. | Causes a similar problem as when the point estimate is VE = 100%. If an upper CI was available, we used that CI instead to derive the SE. Otherwise, we imputed a value of VE = 97.5% (or RR = .025). This allowed us to derive SEs while recognizing that the value may approach 100%. The values of 99.9% for the upper CI and 97.5% for the lower CI were chosen to be symmetrical (in the log RR scale) around the value of VE = 100%. | | 6. | A study cohort had a point estimate for VE available, but no CIs. | No SE could be computed for such effects, and they were removed from the meta-analytic models. We further flagged these cases to comment on and acknowledge within our report. | | 7. | A study cohort had a point estimate, but only one CI. | In such cases, we used the SE suggested by the CI that was provided. | | 8. | A CI was reported as -/+
Infinity or a CI was
reported as less than -
100% (i.e189.8%) | We treated "infinity" or "less than -100%" as a missing value. We reasoned such estimates would have large enough errors as to be too imprecise to warrant including within our models. | | 9. | One of the CIs was equal in value to the point estimate. | When a CI is equal in magnitude to the point estimate, the implied standard error (SE) is effectively zero. SEs of zero cannot be used in analyses, so we used the other (provided) CI to derive an SE. This rule can be seen as a specific case of rule #1. | | 10 | Both CIs were equal in magnitude to the point estimate. | When both CIs areequal in magnitude to the point estimate, both imply a standard error (SE) of zero, which cannot be used in meta-analytic models. Since SEs of zero are not usually plausible, such occurrences were taken to be artifacts of rounding estimates in reporting when SE was very low. Because low SEs are particularly valuable in meta-analytic reviews, we sought to retain these studies while accounting for this. Our solution was to add a 5 beyond the last decimal of the upper CI reported, and subtract a 5 beyond the last decimal of the lower CI reported. For example: [CI = 15.5 - 15.5] -> [CI = 15.45 - 15.55] [CI = 15 - 15] -> [CI = 14.5 - 15.5] This rule was derived assuming that these cases derived from rounding error (i.e., rounding the imputed values to the right to have one fewer decimal point would lead to the values on the left). This rule allowed us to retain estimates for meta-analytic modeling while accounting for the fact that these studies would have small SE values. Since 2 CIs were imputed, the meta-analysis used the whichever produced the larger SE as per rule #1. | | 11. The point estimate was outside the range of the CI. | This was assumed to be an error in reporting. We thus operated under the assumption that the point-estimate was accurate and used the CI that had a plausible value to derive SEs (e.g., the upper CI if it was higher than the point estimate, or the lower CI if it was below the | |---|---| | | point estimate). | #### Indices of Heterogeneity As of version 10.7 of our review, we are computing three indices of effect size heterogeneity to qualify the findings from our meta-analytic models. These indices are computed whenever we produced three-level meta-analytic models (i.e., they were not produced for random-effects models) and include: - 1. 95% Prediction Intervals (PI). Prediction intervals reflect the likely range within which a future effect size (i.e., a VE estimate from a new study, or VE observed in a new context) would be expected to fall. Prediction intervals are produced for every point estimate within the models (i.e., at each time point) and account for both sampling error and true variability in the population of effect sizes we are studying. Prediction intervals are represented in the same unit as our other estimates (i.e., VE as a percentage). - a) Formal Interpretation: If we were to repeat our sampling of effect sizes (i.e., from primary studies) an infinite number of times, and then collected a new data point (i.e., a VE estimate from a new study), then 95% of the generated prediction intervals would be expected to capture the new data point. - 1. σ (Sigma): σ represents the estimated standard deviation in the (true) population of VE (i.e., without sampling error). The unit of this index is
the same as used during the meta-analytic process; in our case, σ is provided in log odds ratios. In three-level models, σ can be divided into two levels. - a) Within-Study σ: Indicates variability in VE within studies. - b) Between-Study σ : Indicates variability in VE between studies. The between-study σ is comparable in interpretation to the tau (τ) parameter produced in traditional random effects models. - 1. I². The value of I² (which ranges from 0 to 1) captures the proportion of variability in observed effect sizes which cannot be attributed to sampling error. For example, a value of 0 indicates that most of the variability in VE estimates may be due to sampling errors, and a value of 1 indicates that most of the variability can be attributed to true variation in VE across studies (accounting for any sampling error). This relative index of heterogeneity can be broken down into two levels: - a) Within-Study I^2 : Indicates the relative heterogeneity in VE observed within studies. - b) Between-Study I^2 : Indicates the relative heterogeneity in VE observed between studies. The between-study I^2 is comparable in interpretation to the I^2 produced in traditional random effects models. #### Appendix 3: Definitions and glossary Full vaccine series: Receipt of one of the following COVID-19 vaccines authorised by Health Canada: - Two dose of AstraZeneca/COVISHIELD (AZD1222/ChAdOx1), Moderna (mRNA-1273), or Pfizer-BioNTech (BNT162b2); - One dose of Janssen (Johnson & Johnson: Ad26.COV2.S); or - A combination of the above **Fully vaccinated**: A person who is at least 14 days post having received one of the following vaccine schedules: - the full series of a COVID-19 vaccine authorized by Health Canada (see above); or - the full series of the above vaccines plus an additional dose in immunocompromised individuals #### **Additional dose**: A person who has received: - a full series of a COVID-19 vaccine authorised by Health Canada (see above) plus an additional dose of a COVID-19 vaccine authorised by Health Canada; or - the full series of the above vaccines plus two additional doses in immunocompromised individuals **Confirmed infection**: A person with confirmation of infection with SARS-CoV-2 documented by the detection of at least 1 specific gene target by a validated laboratory-based nucleic acid amplification test (NAAT) assay (e.g. real-time PCR or nucleic acid sequencing) performed at a community, hospital, or reference laboratory (the National Microbiology Laboratory or a provincial public health laboratory).(2) **Symptomatic illness:** A person with confirmation of SARS-CoV-2 infection, presenting symptoms that vary in type, frequency, and severity. The most common symptoms include fever, chills, new or worsening cough, fatigue, headache, and gastrointestinal symptoms.(3) **Asymptomatic infection**: A person with confirmation of SARS-CoV-2 infection but with no presentation of symptoms in the course of the disease. **Hospitalisation due to COVID-19:** Inpatient admission to a hospital and/or ICU unit, associated with laboratory-confirmed SARS-CoV-2 infection. **Death due to COVID-19:** Death resulting from a clinically compatible illness in a probable or confirmed COVID-19 case, with no presence of clear alternative causes unrelated to COVID-19 (e.g., trauma, poisoning, drug overdose). Variants of concern (VOC): A SARS-CoV-2 variant is considered a VOC in Canada based on a set of criteria including increased transmissibility or detrimental change in COVID-19 epidemiology, increased virulence, decreased effectiveness of vaccines, and so on. As of August 05, 2021, Canada has designated the following SARS-CoV-2 variants as VOCs: Alpha (B.1.1.7), Beta (B.1.351, B.1.351.1, B.1.351.2, B.1.351.3, B.1.351.4), Gamma (P.1, P.1.1, P.1.2), Delta (B.1.617.2, AY.1, AY.2, AY.3, AY.3.1), and Omicron (B.1.1.529, BA.1, BA.2, B.A.3). Vaccine effectiveness (VE): A measure of how well a vaccine protects people from getting the outcome of interest in real-world practice (For example: VE of 92% against infection means that 92% of people will be protected from becoming infected with COVID and 8% of people will still be at risk of becoming infected with COVID). In the context of the current report, we have utilised the term vaccine effectiveness to cover all studies. However, we are aware that the studies that have been included range from efficacy through to effectiveness studies. We decided to use this terminology as it is consistent with how most evidence synthesis products describe these studies. To be consistent with this, in the French summary we have utilised the term efficacité, and it is noted that in French there is no distinction between the translations of efficacy and effectiveness. AZ: AstraZeneca CIs: Confidence Intervals Delta: variant of concern B.1.617.2 **HCW:** Healthcare workers LTC: Long-term care LTCF: Long-term care facility MOD: Moderna **Obs:** observational study Omicron: variant of concern B.1.1.529 OR: odds ratio **PF**: Pfizer RCT: Randomized controlled trial RoB: Risk of bias UK: United Kingdom USA: United States of America **VOI:** variant of interest WHO: World Health Organization #### Appendix 4: Critical appraisal process We appraised the quality of the individual studies using an adapted version of ROBINS-I. This tool classifies the Risk of Bias of a study as **Low, Moderate, Serious, Critical, or No Information**. *Low Risk of Bias indicates High Quality, and Critical Risk of Bias indicates Very Low (insufficient) Quality*. ROBINS-I appraises 7 bias domains and judges each study against an ideal reference randomised controlled trial. To improve the utility of ROBINS-I for assessing studies reporting vaccine effectiveness, we have focused on study characteristics that introduce bias as reported in the vaccine literature (see WHO. Evaluation of COVID-19 vaccine effectiveness. Interim Guidance. 17 March 2021). An overall judgement of "serious" or "critical" is given when the study is judged to be at critical risk of bias in at least one domain. Three or more serious risk of bias domains is given an overall risk of bias of critical. # Appendix 5: Data-extraction template | Study details | | |--------------------------------------|---| | Source | First author of study and year of publication | | Location | Country data was collected in | | COI | If conflicts of interest were reported | | Funding | public or industry | | Study type | RCT/cohort/data-linkage/test-negative/case-control/other | | Publication format | Peer-reviewed / pre-print / report | | Population(s) | general public/LTC/Households/HCW/Other | | Total (N) | Total study sample | | Age | Description of age of the population | | Female | number or % | | Definition of cases | How were COVID-19 cases defined | | Definition of COVID hospitalisations | How were COVID-19 hospitalisations defined | | Definition of COVID deaths | How were COVID-19 deaths defined | | Vaccines | Details of what vaccines were included in the study | | Booster dose | Did the study report on booster doses (Y/N) | | Comparator | What comparison group was used to generate VE | | Study calendar time | When was the study actually conducted | | Outcomes | | | Variant sub-group | Was a specific variant being studied (any, delta, or omicron) | | Was VOC sequenced | Yes or no, only applicable if looking at a variant | | Outcome | Cases, hospitalisations, or deaths | |---------------------|---| | Specific vaccine | If individual vaccine data is reported | | Vaccine class | mRNA, adenovirus, or mixed (reporting mRNA, adenovirus, and/or mixed doses) | | Effect measure used | VE, RR, or other | | Level of CIs | 95% or 99% | | Time window | Time since second dose administered | | VE outcome | Reported point estimate | | Lower CI | Reported lower CI | | Upper CI | Reported upper CI | | Adjustments | What variables were used to adjust for in analyses | | Comments | | ## Appendix 6a: Flow chart of studies included in the current update: ## Appendix 6b: Studies excluded from the current update (from databases and hand search): | Authors | Title | Journal | Reason for exclusion | |-------------------|---|---------------------------------------|-------------------------| | Adams et al. | Vaccine Effectiveness of Primary Series and
Booster Doses against Omicron Variant
COVID-19-Associated Hospitalization in the
United States | Preprint - medRxiv | wrong study
duration | | Almufty et al. | COVID-19 vaccine breakthrough infection among fully vaccinated healthcare workers in Duhok governorate, Iraqi Kurdistan: A retrospective cohort study | Journal of
Medical
Virology | wrong outcome | | Altarawneh et al. | Effects of Previous Infection and Vaccination on Symptomatic Omicron Infections | New England
Journal of
Medicine | wrong study
duration | | Andrejko et al. | Prevention of Coronavirus Disease 2019
(COVID-19) by mRNA-Based Vaccines Within
the General Population of California | Clinical
Infectious
Diseases | wrong study
duration | | Andrejko et al. | Waning of two-dose BNT162b2 and mRNA-
1273 vaccine effectiveness against symptomatic | Preprint -
medRxiv | already included | | | SARSCoV-2 infection is robust to depletion-of-
susceptibles bias | | | |-----------------------|--|---|---------------------------------------| |
Arashiro et al. | COVID-19 vaccine effectiveness against symptomatic SARS-CoV-2 infection during Delta-dominant and Omicron-dominant periods in Japan: a multi-center prospective case-control study (FASCINATE study) | Clinical infectious diseases: an official publication of the Infectious Diseases Society of America | wrong study
duration | | Bansal, et al. | Duration of COVID-19 mRNA Vaccine
Effectiveness against Severe Disease | Vaccines | wrong study
duration | | Ben Tov et al. | BNT162b2 mRNA COVID-19 vaccine effectiveness in patients with coeliac disease autoimmunity: Real world data during mass vaccination campaign | Journal of Pediatric Gastroenterolo gy and Nutrition | Wrong publication type | | Bhatnagar et al. | Effectiveness of BBV152/Covaxin and AZD1222/Covishield vaccines against severe COVID-19 and B.1.617.2/Delta variant in India, 2021: a multi-centric hospital-based case-control study | International
Journal of
Infectious
Diseases | wrong study
duration | | Corral-Gudino, et al. | The Omicron wave and the waning of COVID-
19 vaccine effectiveness. Influence of vaccine
booster and age on confirmed infection
incidence | European
Journal of
Internal
Medicine | wrong study
duration | | Du et al. | Reinfection risk and vaccination effectiveness against Omicron | Preprint –
Research
Square | Handsearch –
wrong study
design | | Emani et al. | SARS-CoV2 Breakthrough Infections in Elderly
Third Booster and Vaccinated Population
Considered Vaccine Immune During Omicron
(B.1.1.529)Variant Surge in Israel | Current Trends
in
Biotechnology
and Pharmacy | wrong study
duration | | Emani et al. | Increasing SARS-CoV2 cases, hospitalizations and deaths among the vaccinated elderly populations during the Omicron (B.1.1.529) variant surge in UK | Preprint -
medRxiv | wrong study
duration | | Furer et al. | Immunogenicity induced by two and three doses of the BNT162b2 mRNA vaccine in patients with autoimmune inflammatory rheumatic | Annals of the
Rheumatic
Diseases | No useful data | | | diseases and immunocompetent controls: A longitudinal multicentre study | | | |-----------------|---|---|-------------------------| | De Gier et al. | COVID-19 vaccine effectiveness against
mortality and risk of death from other causes
after COVID-19 vaccination, the Netherlands,
January 2021-January 2022 | Preprint -
medRxiv | wrong study
duration | | Grewal et al. | Effectiveness of a fourth dose of covid-19 mRNA vaccine against the omicron variant among long term care residents in Ontario, Canada: Test negative design study | The BMJ | wrong study
duration | | Guedalia et al. | Effectiveness of BNT162b2 mRNA COVID-19 third vaccines during pregnancy: A national observational study in Israel | Preprint -
Research
Square | wrong study
duration | | Hatfield et al. | Effectiveness of COVID-19 vaccination against SARS-CoV-2 Infection among Residents of US Nursing Homes, Before and During the Delta variant Predominance, December 2020 - November 2021 | Clinical infectious diseases: an official publication of the Infectious Diseases Society of America | wrong study
duration | | Hong et al. | COVID-19 VACCINES ARE HIGHLY
EFFECTIVE IN PATIENTS WITH IBD:
OUTCOMES FROM THE SCOUT IBD
COHORT | Gastroenterolo
gy | wrong outcome | | Hulme et al. | Effectiveness of BNT162b2 booster doses in England: an observational study in OpenSAFELY-TPP | Preprint -
medRxiv | wrong study
duration | | Igari et al. | Antibody responses and SARS-CoV-2 infection after BNT162b2 mRNA booster vaccination among healthcare workers in Japan | Journal of infection and chemotherapy: official journal of the Japan Society of Chemotherapy | wrong study
duration | | Ioannou et al. | Effectiveness of mRNA COVID-19 vaccine boosters against infection, hospitalization and death: A target trial emulation in the omicron (B.1.1.529) variant era | Preprint -
medRxiv | wrong study
duration | | John et al. | Effectiveness of COVID-19 viral vector vaccine Ad.26.COV2.S vaccine and comparison with mRNA vaccines in patients with cirrhosis | Journal of
Hepatology | wrong study
duration | |------------------|--|--|-----------------------------------| | John et al. | Effectiveness of mRNA vaccines in patients with cirrhosis with rising prevalence of SARS-CoV-2 delta variant | Journal of
Hepatology | wrong study
duration | | Khan et al. | mRNA COVID-19 vaccine effectiveness in liver transplant patients | Journal of
Hepatology | wrong publication type | | Kim et al. | Effectiveness of two and three mRNA COVID-
19 vaccine doses against Omicron- and Delta-
Related outpatient illness among adults, October
2021-February 2022 | Influenza and other Respiratory Viruses | wrong
comparator | | Kislaya et al. | SARS-CoV-2 BA.5 vaccine breakthrough risk and severity compared with BA.2: a case-case and cohort study using Electronic Health Records in Portugal | Preprint -
medRxiv | wrong study
duration | | Kiss et al. | Nationwide Effectiveness of First and Second SARS-CoV2 Booster Vaccines During the Delta and Omicron Pandemic Waves in Hungary (HUN-VE 2 Study) | Frontiers in
Immunology | wrong study
duration | | Koen et al. | Efficacy of the AZD1222 (ChAdOx1 nCoV-19)
COVID-19 Vaccine Against SARS-CoV-2
Variants of Concern | Preprint -
medRxiv | wrong study
duration | | Lemos et al. | Estimation of the Odds Ratio in Vaccinated Individuals and Determination of Vaccine Efficacy against Sars-Cov-2 Infection in Angola – Part I | Preprint – preprints.org | Handsearch – wrong study duration | | Lev-Tzion et al. | COVID-19 vaccine effectiveness in inflammatory bowel disease patients on tumornecrosis factor inhibitors: Real world data from a mass-vaccination campaign | Journal of Pediatric Gastroenterolo gy and Nutrition | wrong outcome | | Lewis et al. | Effectiveness Associated with Vaccination after COVID-19 Recovery in Preventing Reinfection | JAMA
Network Open | wrong study
duration | | Lewnard et al. | Association of SARS-CoV-2 BA.4/BA.5
Omicron lineages with immune escape and
clinical outcome | Preprint -
medRxiv | Handsearch – wrong outcome | | Lim et al. | Antibody response to variants during Omicron outbreak after BNT162b2 booster in Korean healthcare workers | Preprint –
Research
Square | wrong outcome | | Link-Gelles et al. | Effectiveness of 2, 3, and 4 COVID-19 mRNA
Vaccine Doses Among Immunocompetent
Adults During Periods when SARS-CoV-2
Omicron BA.1 and BA.2/BA.2.12.1 Sublineages
Predominated - VISION Network, 10 States,
December 2021-June 2022 | MMWR.
Morbidity and
mortality
weekly report | wrong
comparator | |--------------------|---|--|-------------------------| | Marchevsky et al. | An exploratory analysis of the response to ChAdOx1 nCoV-19 (AZD1222) vaccine in males and females | eBioMedicine | wrong study
duration | | Mayr et al. | Comparative COVID-19 Vaccine Effectiveness
Over Time in Veterans | Open forum infectious diseases | wrong
comparator | | Mazagatos et al. | COVID-19 vaccine effectiveness against hospitalization due to SARS-CoV-2: A test-negative design study based on Severe Acute Respiratory Infection (SARI) sentinel surveillance in Spain | Influenza and other respiratory viruses | wrong
comparator | | McMenamin et al. | Vaccine effectiveness of one, two, and three doses of BNT162b2 and CoronaVac against COVID-19 in Hong Kong: a population-based observational study | The Lancet.
Infectious
diseases | wrong study
duration | | Moein et al. | COVID-19 INFECTION AND
BREAKTHROUGH INFECTION IN POST
LIVER TRANSPLANT PATIENTS | Gastroenterolo
gy | wrong publication type | | Munro et al. | Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial | The Lancet
Infectious
Diseases | wrong study
duration | | Nordstrom et al. | Effectiveness of a fourth dose of mRNA COVID-19 vaccine against all-cause mortality in long-term care facility residents and in the oldest old: A nationwide, retrospective cohort study in Sweden | The Lancet regional health. Europe | wrong study
duration | | Palinkas et al. | Effectiveness of COVID-19 Vaccination in
Preventing All-Cause Mortality among Adults
during the Third Wave of the Epidemic in
Hungary: Nationwide Retrospective Cohort
Study | Vaccines | wrong outcome | | Ranzani et al. | Vaccine effectiveness of ChAdOx1 nCoV-19 against COVID-19 in a socially vulnerable community in Rio de Janeiro, Brazil: author's response | Clinical
Microbiology
and Infection | wrong
publication type | |-----------------------------|---
--|---------------------------| | Robilotti et al. | Effectiveness of mRNA booster vaccine among health Care workers in New York City during the omicron surge, December 2021- January 2022 | Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases | wrong study
duration | | Sentís et al. | Estimation of COVID-19 vaccine effectiveness against hospitalisation in individuals aged ≥ 65 years using electronic health registries; a pilot study in four EU/EEA countries, October 2021 to March 2022 | Euro
surveillance | wrong study
duration | | Silverman et al. | Vaccine Effectiveness during Outbreak of
COVID-19 Alpha (B.1.1.7) Variant in Men's
Correctional Facility, United States | Emerging
Infectious
Diseases | wrong study
duration | | Sonmezer et al. | Relative Vaccine Effectiveness of the Third
Dose of CoronaVac or BNT162b2 Following a
Two-Dose CoronaVac Regimen: A Prospective
Observational Cohort Study from an Adult
Vaccine Center in Turkey | Vaccines | wrong study
duration | | Stirrup et al | Clinical effectiveness of SARS-CoV-2 booster vaccine against Omicron infection in residents and staff of Long-Term Care Facilities: a prospective cohort study (VIVALDI) | Preprint -
medRxiv | Excluded for RoB | | Stoliaroff-
Pepin et al. | Effectiveness of vaccines in preventing hospitalization due to COVID-19: A multicenter hospital-based case-control study, Germany, June 2021 to January 2022 | Preprint -
medRxiv | wrong study
duration | | Swift et al. | Effectiveness of Messenger RNA Coronavirus
Disease 2019 (COVID19) Vaccines Against
Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2) Infection in a Cohort of
Healthcare Personnel | Clinical
Infectious
Diseases | wrong study
duration | | Tang et al. | COVID-19 mRNA vaccine effectiveness against hospitalisation and death in veterans according to frailty status during the SARS-CoV-2 delta (B.1.617.2) variant surge in the USA: a retrospective cohort study | The Lancet.
Healthy
longevity | wrong study
duration | |-----------------|--|-------------------------------------|-------------------------------| | Tartof et al | Effectiveness Associated With BNT162b2 Vaccine Against Emergency Department and Urgent Care Encounters for Delta and Omicron SARS-CoV-2 Infection Among Adolescents Aged 12 to 17 Years | JAMA Netw
Open | Handsearch – wrong population | | Torres et al. | Clinical efficacy of SARS-CoV-2 vaccination in hemodialysis patients | Kidney
international
reports | data in figures | | Voko et al. | Effectiveness and Waning of Protection With
Different SARS-CoV-2 Primary and Booster
Vaccines During the Delta Pandemic Wave in
2021 in Hungary (HUN-VE 3 Study) | Frontiers in
Immunology | wrong study
duration | | Young-Xu et al. | Effectiveness of mRNA COVID-19 vaccines against Omicron and Delta variants in a matched test-negative case-control study among US veterans | BMJ open | wrong study
duration | # Appendix 7: Studies excluded from the updates 1-8 (from databases only): | Authors | Title | Journal | Reason for exclusion | |-------------------------------|--|--|---| | Abbasi | COVID-19 mRNA Vaccines Blunt
Breakthrough Infection Severity | JAMA - Journal of
the American
Medical Association | wrong
intervention | | Abbasi | Oldest Adults Need 2 mRNA Vaccine Doses to
Neutralize SARS-CoV-2 | JAMA - Journal of
the American
Medical Association | wrong publication type | | Abdool Karim
& de Oliveira | New SARS-CoV-2 variants - Clinical, public health, and vaccine implications | New England
Journal of Medicine | wrong intervention | | Absalon et al. | Safety and Efficacy of the BNT162b2 mRNA
Covid-19 Vaccine. Reply | The New England
Journal of Medicine | wrong intervention | | Abu-Raddad et al. | Effect of mRNA Vaccine Boosters against
SARS-CoV-2 Omicron Infection in Qatar | New England
Journal of Medicine | wrong study
duration | | Abu Raddad et al. | Effectiveness of BNT162b2 and mRNA-1273
COVID-19 boosters against SARS-CoV-2
Omicron (B.1.1.529) infection in Qatar | Preprint - medRxiv | wrong outcome | | Abu-Raddad et al. | Waning mRNA-1273 Vaccine Effectiveness against SARS-CoV-2 Infection in Qatar | New England
Journal of Medicine | wrong publication type | | Abu Raddad et al. | Waning of mRNA-1273 vaccine effectiveness against SARS-CoV-2 infection in Qatar | | delayed exclusion - this is a letter of correspondence that refers to an original study | | Abu Raddad et
al. | Effect of vaccination and of prior infection on infectiousness of vaccine breakthrough infections and reinfections | Preprint - medRxiv | wrong outcome | | Abu Raddad et al. | Protection afforded by the BNT162b2 and mRNA-1273 COVID-19 vaccines in fully vaccinated cohorts with and without prior infection | Preprint - medRxiv | wrong intervention | | Abu Raddad et
al. | Protection offered by mRNA-1273 versus
BNT162b2 vaccines against SARS-CoV-2
infection and severe COVID-19 in Qatar | Preprint - medRxiv | wrong
comparator | | Abu-Raddad et al. | Effectiveness of BNT162b2 and mRNA-1273
COVID-19 boosters against SARS-CoV-2
Omicron (B.1.1.529) infection in Qatar | Preprint - medRxiv | wrong study
duration | | Abu-Raddad et al. | Effect of mRNA Vaccine Boosters against
SARS-CoV-2 Omicron Infection in Qatar | The New England journal of medicine | wrong study
duration | |---------------------|--|--|--| | Abu-Raddad et al. | Protection offered by mRNA-1273 versus
BNT162b2 vaccines against SARS-CoV-2
infection and severe COVID-19 in Qatar | Preprint - medRxiv | wrong
comparator | | Abu-Raddad et al. | Effectiveness of the BNT162b2 Covid-19
Vaccine against the B.1.1.7 and B.1.351 Variants | The New England
Journal of Medicine | wrong intervention | | Abu-Raddad et al. | Pfizer-BioNTech mRNA BNT162b2 Covid-19 vaccine protection against variants of concern after one versus two doses | Journal of Travel
Medicine | wrong
intervention | | Abu-Sinni et al. | COVID-19 vaccine - Long term immune decline and breakthrough infections | Vaccine | wrong
comparator | | Ackland et al. | Evolution of case fatality rates in the second wave of coronavirus in England: effects of false positives, a Variant of Concern and vaccination | Preprint - medRxiv | wrong
intervention | | Adhikari &
Spong | COVID-19 Vaccination in Pregnant and
Lactating Women | JAMA - Journal of
the American
Medical Association | wrong study
design | | Adibi et al. | Continuing COVID-19 Vaccination of Front-
Line Workers in British Columbia with the
AstraZeneca Vaccine: Benefits in the Face of
Increased Risk for Prothrombotic
Thrombocytopenia | Preprint - medRxiv | wrong outcome | | Akaishi et al. | Effectiveness of mRNA COVID-19 Vaccines in Japan during the Nationwide Pandemic of the Delta Variant | Tohoku Journal of
Experimental
Medicine | wrong study
duration (follow-
up period not an
average above 112
days) | | Akaishi et al. | Effectiveness of mRNA COVID-19 Vaccines in Japan During the Nationwide Pandemic of the Delta Variant | The Tohoku journal of experimental medicine | wrong outcome,
wrong
comparator | | Al Qahtani et al. | Post-vaccination outcomes in association with four COVID-19 vaccines in the Kingdom of Bahrain | Scientific reports | wrong study
duration | | Al Qahtani et al. | Morbidity and mortality from COVID-19 post-vaccination breakthrough infections in association with vaccines and the emergence of variants in Bahrain | Preprint - Research
Square | wrong
intervention | | Alali et al. | Effectiveness of BNT162b2 and ChAdOx1
Vaccines against Symptomatic COVID-19
among Healthcare Workers in Kuwait: A
Retrospective Cohort Study | Healthcare (Basel,
Switzerland) | wrong outcome | |--------------------|---|---|---------------------------| | Alali et al. | Effectiveness of BNT162b2 and ChAdOx1 vaccines against symptomatic COVID-19 among Healthcare Workers in Kuwait: A retrospective cohort study | Preprint - medRxiv | wrong intervention | | Albach et al. | Successful BNT162b2 booster vaccinations in a patient with rheumatoid arthritis and initially negative antibody response | Annals of the
Rheumatic Diseases | wrong study
design | | Aldridge et al. | Waning of SARS-CoV-2 antibodies targeting the Spike protein in individuals post second dose of ChAdOx1 and BNT162b2 COVID-19 vaccines and risk of breakthrough infections: analysis of the Virus Watch community cohort | Preprint - medRxiv | wrong
comparator | | Alencar et al. | High Effectiveness of SARS-CoV-2 Vaccines in
Reducing
COVID-19-Related Deaths in over
75-Year-Olds, Ceara State, Brazil | Tropical Medicine
and Infectious
Disease | wrong
intervention | | Alholm et al. | SARS-CoV-2 vaccination in gynecologic oncology | European Journal of
Gynaecological
Oncology | wrong publication
type | | Ali et al. | Evaluation of mRNA-1273 SARS-CoV-2
Vaccine in Adolescents | The New England
Journal of Medicine | wrong intervention | | Alkhafaji et al. | The Impact of COVID-19 Vaccine on Rate of
Hospitalization and Outcome of COVID-19
Infection in a Single Center in the Eastern
Province of Saudi Arabia | Research Square | wrong population | | Allen et al. | Comparative transmission of SARS-CoV-2
Omicron (B.1.1.529) and Delta (B.1.617.2)
variants and the impact of vaccination: national
cohort study, England | Preprint - medRxiv | wrong study
duration | | Alroy-Preis et al. | Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data | The Lancet | wrong intervention | | AlRuthia et al. | Demographic Characteristics and Status of
Vaccinated Individuals with a History of
COVID-19 Infection Pre- or Post-Vaccination: | Vaccines | wrong
comparator | | | A Descriptive Study of a Nationally
Representative Sample in Saudi Arabia | | | |-------------------------|---|-------------------------------------|--| | Altarawneh et al. | Effects of Previous Infection and Vaccination on Symptomatic Omicron Infections | The New England journal of medicine | wrong study
duration | | Altarawneh et al. | Effects of Previous Infection and Vaccination on Symptomatic Omicron Infections | The New England journal of medicine | wrong study
duration | | Altarawneh et al. | Effect of prior infection, vaccination, and hybrid immunity against symptomatic BA.1 and BA.2 Omicron infections and severe COVID-19 in Qatar | Preprint - medRxiv | wrong study
duration | | Altmann et al. | Immunity to SARS-CoV-2 variants of concern | Science | wrong publication type | | Amatya et al. | COVID-19 in fully vaccinated Everest trekkers in Nepal | Journal of Travel
Medicine | wrong study
design | | Amirthalingam
et al. | Higher serological responses and increased vaccine effectiveness demonstrate the value of extended vaccine schedules in combating COVID-19 in England | Preprint - medRxiv | wrong
intervention | | Amit et al. | COVID-19 vaccine efficacy data: solid enough to delay second dose? - Authors' reply | The Lancet | wrong study
design | | Amit et al. | Early rate reductions of SARS-CoV-2 infection and COVID-19 in BNT162b2 vaccine recipients | The Lancet | wrong intervention | | Amodio et al. | Effectiveness of mRNA COVID-19 vaccination against SARS-CoV-2 infection and COVID-19 disease in Sicily over an eight-month period | SSRN | delayed exclusion - unvaccinated group include single-dose and non mRNA vaccines | | Amodio et al. | Effectiveness of mRNA COVID-19
Vaccination on SARS-CoV-2 Infection and
COVID-19 in Sicily over an Eight-Month
Period | Vaccines | wrong study
duration | | Anderegg et al. | Assessing real-world vaccine effectiveness against severe forms of SARS-CoV-2 infection: an observational study from routine surveillance data in Switzerland | Swiss medical
weekly | wrong study
duration | | Andeweg et al. | Protection of COVID-19 vaccination and previous infection against Omicron BA.1 and Delta SARS-CoV-2 infections, the Netherlands, 22 November 2021- 19 January 2022 | Preprint - medRxiv | wrong study
duration | |------------------|--|--|---------------------------| | Andeweg et al. | Protection of COVID-19 vaccination and previous infection against Omicron BA.1 and Delta SARS-CoV-2 infections, the Netherlands, 22 November 2021-19 January 2022 | Preprint - medRxiv | wrong study
duration | | Andrejko et al. | Prevention of COVID-19 by mRNA-based vaccines within the general population of California | Clinical Infectious
Diseases | wrong intervention | | Andrejko et al. | Early evidence of COVID-19 vaccine effectiveness within the general population of California | Hand search;
Preprint - medRxiv | wrong intervention | | Andrews et al. | Effectiveness of COVID-19 vaccines against the Omicron (B.1.1.529) variant of concern | Preprint - medRxiv | duplicated | | Andrews et al. | Effectiveness of COVID-19 vaccines against the Omicron (B.1.1.529) variant of concern | Preprint - medRxiv | wrong
comparator | | Andrews et al. | Effectiveness of COVID-19 booster vaccines against covid-19 related symptoms, hospitalisation and death in England | Nature medicine | wrong
comparator | | Angel et al. | Association between Vaccination with
BNT162b2 and Incidence of Symptomatic and
Asymptomatic SARS-CoV-2 Infections among
Health Care Workers | JAMA - Journal of
the American
Medical Association | wrong intervention | | Anjan et al. | Breakthrough COVID-19 infections after
mRNA vaccination in Solid Organ Transplant
Recipients in Miami, Florida | Transplantation | wrong intervention | | Anonymous | Erratum: Department of Error (The Lancet (2022) 399(10331) (1254-1264), (S0140673622000113), (10.1016/S0140-6736(22)00011-3)) | The Lancet | No PDF available | | Anonymous | Exam 2: Effectiveness of SARS-CoV-2
vaccination in a Veterans Affairs Cohort of
Inflammatory Bowel Disease Patients with
Diverse Exposure to Immunosuppressive
Medications | Gastroenterology | wrong publication
type | | Anonymous et al. | Covid-19 vaccine booster dose: demonstrated clinical efficacy during Delta variant predominance, and no new safety signals | Prescrire
International | No pdf found | | Araminda &
Ramatillah | Evaluation comparison between Astrazeneca
and Moderna vaccine's side effects and efficacy
among Indonesia society based on
sociodemography | International
Journal of Applied
Pharmaceutics | wrong study
design | |-------------------------------|--|---|-------------------------| | Aran | Estimating real-world COVID-19 vaccine effectiveness in Israel | Preprint - medRxiv | wrong intervention | | Arbel et al. | How many lives do COVID vaccines save?
Evidence from Israel | American journal of infection control | wrong study
design | | Arbel et al. | How many lives do COVID vaccines save?
Evidence from Israel | Preprint - medRxiv | wrong
comparator | | Arbel et al. | Effectiveness of a second BNT162b2 booster vaccine against hospitalization and death from COVID-19 in adults aged over 60 years | Nature medicine | wrong study
duration | | Arnold et al. | Are vaccines safe in patients with Long COVID? A prospective observational study | Preprint - medRxiv | wrong intervention | | Arora et al. | Adverse events and breakthrough infections associated with COVID-19 vaccination in the Indian population | Journal of Medical
Virology | wrong study
duration | | Arregoces-
Castillo et al. | Effectiveness of COVID-19 vaccines in older adults in Colombia: a retrospective, population-based study of the ESPERANZA cohort | The Lancet. Healthy longevity | wrong outcome | | Ashby et al. | Severity of COVID-19 after Vaccination among
Hemodialysis Patients: An Observational
Cohort Study | Clinical journal of
the American
Society of
Nephrology :
CJASN | wrong study
duration | | Aslam et al. | Coronavirus disease 2019 vaccination is protective of clinical disease in solid organ transplant recipients | Transplant
Infectious Disease | wrong outcome | | Aslam et al. | Association of disease severity and death outcome with vaccination status of admitted COVID-19 patients in delta period of SARS-COV-2 in mixed variety of vaccine background | Saudi journal of
biological sciences | wrong outcome | | Aslam et al. | COVID-19 vaccination is protective of clinical disease in solid organ transplant recipients | Transplant infectious disease: an official journal of the Transplantation Society | wrong
comparator | | Auvigne et al. | Serious hospital events following symptomatic infection with Sars-CoV-2 Omicron and Delta variants: an exposed-unexposed cohort study in December 2021 from the COVID-19 surveillance databases in France | Preprint - medRxiv | wrong study
duration | |------------------|--|---|-------------------------| | Azamgarhi et al. | BNT162b2 vaccine uptake and effectiveness in UK healthcare workers - a single centre cohort study | Nature
Communications | wrong
intervention | | Baden et al. | Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine | New England
Journal of Medicine | wrong intervention | | Baden et al. | Covid-19 in the Phase 3 Trial of mRNA-1273
During the Delta-variant Surge | Preprint - medRxiv | wrong intervention | | Bahl et al. | Vaccination reduces need for emergency care in breakthrough COVID-19 infections: A
multicenter cohort study | Preprint - medRxiv | wrong intervention | | Bailly et al. | BNT162b2 mRNA vaccination did not prevent
an outbreak of SARS COV-2 variant 501Y.V2
in an elderly nursing home but reduced
transmission and disease severity | Clinical Infectious
Diseases | wrong intervention | | Bajema et al. | Comparative Effectiveness and Antibody
Responses to Moderna and Pfizer-BioNTech
COVID-19 Vaccines among Hospitalized
Veterans - Five Veterans Affairs Medical
Centers, United States, February 1-September
30, 2021 | MMWR. Morbidity and mortality weekly report | wrong
comparator | | Bajema et al. | Effectiveness of COVID-19 mRNA Vaccines
Against COVID-19-Associated Hospitalization
- Five Veterans Affairs Medical Centers, United
States, February 1-August 6, 2021 | MMWR. Morbidity and mortality weekly report | wrong outcome | | Balicer et al. | Effectiveness of the BNT162b2 mRNA COVID-19 Vaccine in Pregnancy | Preprint – Research
Square | wrong intervention | | Baltas et al. | Post-vaccination COVID-19: A case-control study and genomic analysis of 119 breakthrough infections in partially vaccinated individuals | Clinical Infectious
Diseases | wrong
intervention | | Banon et al. | BNT162b2 Messenger RNA COVID-19
Vaccine Effectiveness in Patients With
Inflammatory Bowel Disease: Preliminary Real-
World Data During Mass Vaccination
Campaign | Gastroenterology | duplicated | | Bansal et al. | Duration of COVID-19 mRNA Vaccine
Effectiveness against Severe Disease | Vaccines | wrong study
duration | |-----------------|--|--|-------------------------| | Bansal et al. | Duration of COVID-19 mRNA Vaccine
Effectiveness against Severe Disease | Preprint - medRxiv | wrong study
duration | | Bar On et al. | BNT162b2 vaccine booster dose protection: A nationwide study from Israel | Preprint - medRxiv | wrong intervention | | Barbosa et al. | High effectiveness of sars-cov-2 vaccines in reducing covid-19-related deaths in over 75-year-olds, Ceara State, Brazil | Tropical Medicine
and Infectious
Disease | duplicated | | Barda et al. | Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study | The Lancet | wrong
comparator | | Barlow et al. | Effectiveness of COVID-19 Vaccines Against
SARS-CoV-2 Infection During a Delta Variant
Epidemic Surge in Multnomah County, Oregon,
July 2021 | Preprint - medRxiv | wrong intervention | | Barnabas et al. | A Public Health COVID-19 Vaccination
Strategy to Maximize the Health Gains for
Every Single Vaccine Dose | Annals of Internal
Medicine | wrong outcome | | Bar-On et al. | Protection of BNT162b2 vaccine booster against Covid-19 in Israel | New England
Journal of Medicine | wrong
comparator | | Barrière et al. | Impaired immunogenicity of BNT162b2 anti-
SARS-CoV-2 vaccine in patients treated for
solid tumors | Annals of Oncology | wrong outcome | | Barros et al. | Estimating the early impact of vaccination against COVID-19 on deaths among elderly people in Brazil: Analyses of routinely-collected data on vaccine coverage and mortality | EClinicalMedicine | duplicated | | Baum et al. | High vaccine effectiveness against severe Covid-
19 in the elderly in Finland before and after the
emergence of Omicron | | wrong study
duration | | Baum et al. | High vaccine effectiveness against severe Covid-
19 in the elderly in Finland before and after the
emergence of Omicron | | wrong study
duration | | Baum et al. | Effectiveness of vaccination against SARS-CoV-2 infection and Covid-19 hospitalisation among Finnish elderly and chronically ill-An interim analysis of a nationwide cohort study | PloS one | wrong
comparator | |-----------------------|---|---|---| | Baum et al. | Effectiveness of vaccination against SARS-CoV-2 infection and Covid-19 hospitalization among Finnish elderly and chronically ill—An interim analysis of a nationwide cohort study | Preprint - medRxiv | wrong intervention | | Behera et al. | Effectiveness of COVID-19 vaccine (Covaxin) against breakthrough SARS-CoV-2 infection in India | Human Vaccines
and
Immunotherapeutic
s | wrong outcome | | Bello Chavolla et al. | Effectiveness of a nation-wide COVID-19 vaccination program in Mexico | | wrong study
duration | | Belmin et al. | First-Dose Coronavirus 2019 Vaccination
Coverage among the Residents of Long-Term
Care Facilities in France | Gerontology | wrong outcome | | Ben Dov, et al. | Impact of tozinameran (BNT162b2) mRNA vaccine on kidney transplant and chronic dialysis patients: 3-5 months followup | Preprint - medRxiv | delayed exclusion - data mainly focusing on immunogenicity findings | | Ben-Aharon et al. | 1559O Efficacy and toxicity of BNT162b2 vaccine in cancer patients | Annals of Oncology | duplicated | | Benenson et al. | BNT162b2 mRNA Covid-19 Vaccine
Effectiveness among Health Care Workers | The New England
Journal of Medicine | wrong intervention | | Benjamini et al. | Safety and efficacy of BNT162b mRNA
Covid19 Vaccine in patients with chronic
lymphocytic leukemia | Haematologica | wrong outcome | | Benotmane et al. | Low immunization rates among kidney transplant recipients who received 2 doses of the mRNA-1273 SARS-CoV-2 vaccine | Kidney
International | wrong outcome | | Benotmane et al. | Weak anti-SARS-CoV-2 antibody response after
the first injection of an mRNA COVID-19
vaccine in kidney transplant recipients | Kidney
International | wrong outcome | | Ben-Tov et al. | BNT162b2 Messenger RNA COVID-19
Vaccine Effectiveness in Patients With
Inflammatory Bowel Disease: Preliminary Real-
World Data During Mass Vaccination
Campaign | Gastroenterology | wrong intervention | | Berec et al. | Real-life protection provided by vaccination, booster doses and previous infection against covid-19 infection, hospitalisation or death over time in the Czech Republic: A whole country retrospective view | Preprint - medRxiv | wrong
comparator | |------------------------|---|--|---| | Berec et al. | Real-life protection provided by vaccination, booster doses and previous infection against covid-19 infection, hospitalisation or death over time in the Czech Republic: A whole country retrospective view | Preprint - medRxiv | delayed exclusion - baseline is calculated 0-2 months after 14 days post-receipt of second dose, which is beyond our 30.5 days average post- receipt of second dose threshold | | Bergwerk et al. | Covid-19 Breakthrough Infections in
Vaccinated Health Care Workers | The New England
Journal of Medicine | wrong outcome | | Bermingham et al. | Estimating the effectiveness of first dose of COVID-19 vaccine against mortality in England: a quasi-experimental study | Preprint - medRxiv | wrong intervention | | Bernal et al. | Early effectiveness of COVID-19 vaccination with BNT162b2 mRNA vaccine and ChAdOx1 adenovirus vector vaccine on symptomatic disease, hospitalisations and mortality in older adults in England | Preprint - medRxiv | wrong intervention | | Bernal et al. | Effectiveness of BNT162b2 mRNA vaccine and ChAdOx1 adenovirus vector vaccine on mortality following COVID-19 | Preprint - medRxiv | wrong
intervention | | Bernal et al. | Effectiveness of COVID-19 vaccines against the B.1.617.2 variant | The New England
Journal of Medicine | wrong intervention | | Berry et al. | Audit of vaccination status of health-care workers who tested positive for SARS-CoV-2 | Journal of clinical virology plus | wrong outcome | | Bestvina et al. | COVID-19 Outcomes, Patient Vaccination
Status, and Cancer-Related Delays during the
Omicron Wave: A Brief Report from the
TERAVOLT Analysis | JTO clinical and research reports | wrong outcome | | Bhattacharya et
al. | Evaluation of the dose-effect association between the number of doses and duration since the last dose of COVID-19 vaccine, and its efficacy in preventing the disease and | Diabetes and
Metabolic
Syndrome: Clinical
Research and
Reviews | wrong study
design | | | reducing disease severity: A single centre, cross-
sectional analytical study from India | | | |-----------------|---|---|---| | Bianchi et al. | BNT162b2 mRNA COVID-19 vaccine effectiveness in the prevention of SARS-CoV-2 Infection: A preliminary report | Journal of
Infectious Diseases | wrong intervention | | Bianchi et al. | BNT162b2 mRNA COVID-19 Vaccine
Effectiveness in the Prevention of SARS-CoV-2
Infection and Symptomatic Disease in Five-
Month Follow-Up: A
Retrospective Cohort
Study | Vaccines | wrong outcome | | Bianchi, et al. | BNT162b2 mRNA COVID-19 vaccine effectiveness in the prevention of SARS-CoV-2 Infection: A preliminary report | SSRN | delayed exclusion - K-M plot included the 14 days before full vaccination - the correct FUP is non-extractable (figure 1) | | Bird et al. | Response to first vaccination against SARS-CoV-2 in patients with multiple myeloma | The Lancet
Haematology | wrong intervention | | Bjork et al. | Effectiveness of the BNT162b2 vaccine in preventing COVID-19 in the working age population - first results from a cohort study in Southern Sweden | Preprint - medRxiv | wrong intervention | | Bjork et al. | COVID-19 vaccine effectiveness against severe disease from the Omicron BA.1 and BA.2 subvariants - surveillance results from southern Sweden, December 2021 to March 2022 | Preprint - medRxi | wrong study
design | | Bjork et al. | High level of protection against COVID-19 after two doses of BNT162b2 vaccine in the working age population-first results from a cohort study in Southern Sweden | Infectious Diseases | duplicated | | Björk et al. | COVID-19 vaccine effectiveness against severe disease from SARS-CoV-2 Omicron BA.1 and BA.2 subvariants - surveillance results from southern Sweden, December 2021 to March 2022 | Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin | wrong study
duration | | Blain et al. | Receptor binding domain-IgG levels correlate with protection in residents facing SARS-CoV-2 B.1.1.7 outbreaks | Allergy | wrong intervention | |----------------------------|---|---|-----------------------| | Blaiszik et al. | The Delta Variant Had Negligible Impact on COVID-19 Vaccine Effectiveness in the USA | Preprint - medRxiv | wrong study
design | | Bleicher et al. | Early exploration of COVID-19 vaccination safety and effectiveness during pregnancy: interim descriptive data from a prospective observational study | Vaccine | wrong outcome | | Bliden et al. | Evolution of Anti-SARS-CoV-2 IgG Antibody
and IgG Avidity Post Pfizer and Moderna
mRNA Vaccinations | Preprint - medRxiv | wrong outcome | | Bobdey et al. | Effectiveness of ChAdOx1 nCOV-19 Vaccine: Experience of a tertiary care institute | Medical Journal
Armed Forces India | wrong intervention | | Bollineni et al. | Characteristics and outcomes among vaccinated lung transplant patients with breakthrough COVID-19 | Transplant infectious disease: an official journal of the Transplantation Society | wrong outcome | | Bongiovanni et al. | Evaluation of the immune response to COVID-
19 vaccine mRNA BNT162b2 and correlation
with previous COVID-19 infection | Journal of Clinical
Virology | wrong outcome | | Botton et al. | Effectiveness of Ad26.COV2.S Vaccine vs
BNT162b2 Vaccine for COVID-19
Hospitalizations | JAMA Network
Open | wrong
comparator | | Bookstein
Peretz et al. | Short-term outcome of pregnant women vaccinated with BNT162b2 mRNA COVID-19 vaccine | Ultrasound in
Obstetrics &
Gynecology | wrong intervention | | Botton et al. | Effectiveness of Ad26.COV2.S Vaccine vs
BNT162b2 Vaccine for COVID-19
Hospitalizations | JAMA network open | wrong
comparator | | Bouton et al. | COVID-19 vaccine impact on rates of SARS-CoV-2 cases and post vaccination strain sequences among healthcare workers at an urban academic medical center: a prospective cohort study | Preprint - medRxiv | wrong outcome | | Bouton et al. | Coronavirus Disease 2019 Vaccine Impact on
Rates of Severe Acute Respiratory Syndrome
Coronavirus 2 Cases and Postvaccination Strain
Sequences Among Health Care Workers at an | Open forum infectious diseases | wrong intervention | | | Urban Academic Medical Center: A Prospective
Cohort Study | | | |--------------------------------|--|--|-------------------------| | Boyarsky et al. | Antibody response to 2-dose sars-cov-2 mrna vaccine series in solid organ transplant recipients | JAMA - Journal of
the American
Medical Association | wrong intervention | | Braeye et al. | COVID-19 vaccine effectiveness against
symptomatic infection and hospitalization in
Belgium, July 2021-April 2022 | Preprint - medRxiv | data in figures | | Braeye et al. | Vaccine effectiveness against infection and onwards transmission of COVID-19: Analysis of Belgian contact tracing data, January-June 2021 | Vaccine | wrong intervention | | Braeye et al. | Vaccine effectiveness against onward transmission of SARS-CoV2-infection by variant of concern and time since vaccination, Belgian contact tracing, 2021 | Vaccine | no usable data | | Braeye et al. | COVID-19 Vaccine effectiveness against
symptomatic infection and hospitalization in
Belgium, July 2021-APRIL 2022 | Preprint - medRxiv | no follow-up data | | Branda et al. | Impact of the additional/booster dose of COVID-19 vaccine against severe disease during the epidemic phase characterized by the predominance of the Omicron variant in Italy, November 2021 - March 2022 | Preprint - medRxi | wrong study
duration | | Brinkley-
Rubinstein et al. | Breakthrough SARS-CoV-2 Infections in Prison after Vaccination | The New England
Journal of Medicine | wrong intervention | | Britton et al. | Association of COVID-19 Vaccination with
Symptomatic SARS-CoV-2 Infection by Time
since Vaccination and Delta Variant
Predominance | JAMA - Journal of
the American
Medical Association | duplicated | | Britton et al. | Association of COVID-19 Vaccination With
Symptomatic SARS-CoV-2 Infection by Time
Since Vaccination and Delta Variant
Predominance | JAMA | already assessed | | Brosh-Nissimov et al. | BNT162b2 vaccine breakthrough: clinical characteristics of 152 fully vaccinated hospitalized COVID-19 patients in Israel | Clinical
Microbiology and
Infection | wrong outcome | | Brouqui et al. | COVID-19 re-infection | European Journal of
Clinical
Investigation | wrong intervention | | Brunelli et al. | Comparative Effectiveness of mRNA-Based
BNT162b2 Vaccine versus Adenovirus Vector-
Based Ad26.COV2.S Vaccine for Prevention of
COVID-19 among Dialysis Patients | Journal of the
American Society of
Nephrology: JASN | wrong
comparator | |------------------|---|---|--| | Brunner et al. | Comparison of Antibody Response Durability
of mRNA-1273, BNT162b2, and Ad26.COV2.S
SARS-CoV-2 Vaccines in Healthcare Workers | Preprint - medRxiv | wrong outcome | | Brunner et al. | Comparison of Antibody Response Durability
of mRNA-1273, BNT162b2, and Ad26.COV2.S
SARS-CoV-2 Vaccines in Healthcare Workers | New England
Journal of Medicine | wrong outcome | | Brunner et al. | SARS-CoV-2 Postvaccination Infections
Among Staff Members of a Tertiary Care
University Hospital—Vienna, January-July 2021;
an Exploratory Study on 8 500 Employees with
Better Outcome of Vector than m-RNA
Vaccine | Preprint - SSRN | wrong intervention | | Bruxvoort et al. | Effectiveness of mRNA-1273 against delta, mu, and other emerging variants of SARS-CoV-2: test negative case-control study | BMJ (Clinical research ed.) | wrong
comparator | | Bruxvoort et al. | Real-world effectiveness of the mRNA-1273 vaccine against COVID-19: Interim results from a prospective observational cohort study | Lancet Regional
Health. Americas | wrong outcome | | Bruxvoort et al. | Effectiveness of mRNA-1273 against Delta,
Mu, and other emerging variants | Preprint - medRxiv | delayed exclusion - baseline VE assessed at 14-60 (below our 30-day threshold) | | Buchan et al. | Effectiveness of COVID-19 vaccines against
Omicron or Delta symptomatic infection and
severe outcomes | Preprint - medRxiv | duplicated | | Buchan et al. | Effectiveness of COVID-19 vaccines against
Omicron or Delta symptomatic infection and
severe outcomes | Preprint - medRxiv | wrong
comparator | | Buchan et al. | Effectiveness of COVID-19 vaccines against
Omicron or Delta infection | Preprint - medRxiv | delayed exclusion - study ID 05-3 is a more recent version of this study | | Bukhari et al. | Real-World Effectiveness of COVID-19
Vaccines: the Diverging Pattern of COVID-19
Cases and Deaths in Countries with High
Vaccination Rates | Preprint - SSRN | wrong intervention | |------------------|---|--|--| | Buonfrate et al. | Antibody response induced by the BNT162b2 mRNA COVID-19 vaccine in a cohort of health-care workers, with or without prior SARS-CoV-2 infection: a prospective study | Clinical
Microbiology and
Infection | wrong intervention | | Burd et al. | The Israeli study of Pfizer BNT162b2 vaccine in pregnancy: Considering maternal and neonatal benefits | Journal of
Clinical
Investigation | wrong publication
type | | Butt et al. | Vaccine Effectiveness of Three vs. Two Doses
of SARS-CoV-2 mRNA Vaccines in a High
Risk National Population | Clinical infectious
diseases : an official
publication of the
Infectious Diseases
Society of America | wrong study
duration | | Butt et al. | Real-world Effectiveness of the SARS-CoV-2 mRNA Vaccines in Preventing Confirmed Infection in Patients on Chronic Hemodialysis | Clinical infectious
diseases : an official
publication of the
Infectious Diseases
Society of America | wrong study
duration | | Butt et al. | Effectiveness of the SARS-CoV-2 mRNA
Vaccines in Pregnant Women | Preprint - Research
Square | wrong intervention | | Butt et al. | Outcomes among patients with breakthrough SARS-CoV-2 infection after vaccination in a high-risk national population | EClinicalMedicine | wrong
intervention | | Butt et al. | Rate and risk factors for breakthrough SARS-CoV-2 infection after vaccination | The Journal of
Infection | wrong intervention | | Butt et al. | SARS-CoV-2 Vaccine Effectiveness in a High-
Risk National Population in a Real-World
Setting | Annals of Internal
Medicine | wrong
intervention | | Butt et al. | SARS-CoV-2 vaccine effectiveness in preventing confirmed infection in pregnant women | The Journal of clinical investigation | wrong study
duration | | Butt et al. | Relative Vaccine Effectiveness of a SARS-CoV-
2 mRNA Vaccine Booster Dose Against the
Omicron Variant | Clinical infectious
diseases : an official
publication of the
Infectious Diseases
Society of America | wrong study
duration; Data
reported in figures
only | | Cabezas et al. | Effects of BNT162b2 mRNA Vaccination on COVID-19 Disease, Hospitalisation and Mortality in Nursing Homes and Healthcare Workers: A Prospective Cohort Study Including 28,594 Nursing Home Residents, 26,238 Nursing Home Staff, and 61,951 Healthcare Workers in Catalonia | Hand search;
Preprint - SSRN | duplicated | |-----------------|--|---------------------------------|--| | Cabezas et al. | Effects of BNT162b2 mRNA Vaccination on
COVID-19 Disease, Hospitalisation and
Mortality in Nursing Homes and Healthcare
Workers: A Prospective Cohort Study Including
28,594 Nursing Home Residents, 26,238
Nursing Home Staff, and 61,951 Healthcare
Workers in Catalonia | Preprint - SSRN | wrong intervention | | Cabezas, et al. | Associations of BNT162b2 vaccination with SARS-CoV-2 infection and hospital admission and death with covid-19 in nursing homes and healthcare workers in Catalonia: Prospective cohort study | BMJ | delayed exclusion - prospective cohort evaluated VE data among nursing home residents, nursing home staff, and healthcare workers. Incidence rates, and adjusted hazard ratios for covid-19 infection according to vaccination status in study population is presented in Table 2 (but no information of individual level follow up; the authors presented only Exposure person days). Kaplan-Meier estimates of COVID infection according to vaccination status in study population is presented visually | | | | | in Figure 3 (but no extractable information presented). | |---------------------------|--|--|---| | Callaghan et al. | Real-world Effectiveness of the Pfizer-
BioNTech BNT162b2 and Oxford-AstraZeneca
ChAdOx1-S Vaccines Against SARS-CoV-2 in
Solid Organ and Islet Transplant Recipients | Transplantation | wrong outcome | | Callaghan et al. | Real-world Effectiveness of the Pfizer-
BioNTech BNT162b2 and Oxford-AstraZeneca
ChAdOx1-S Vaccines Against SARS-CoV-2 in
Solid Organ and Islet Transplant Recipients | Transplantation | wrong outcome | | Carazo et al. | Single-dose mRNA vaccine effectiveness against SARS-CoV-2 in healthcare workers extending 16 weeks post-vaccination: a test-negative design from Quebec, Canada | Preprint - medRxiv | wrong intervention | | Carazo et al. | Single-dose mRNA vaccine effectiveness against SARS-CoV-2 in healthcare workers extending 16 weeks post-vaccination: a test-negative design from Quebec, Canada | Clinical infectious
diseases : an official
publication of the
Infectious Diseases
Society of America | duplicated | | Cardona et al. | SARS-CoV-2 Vaccinated Breakthrough
Infections With Fatal and Critical Outcomes in
the Department of Antioquia, Colombia | Research Square | wrong outcome | | Carioni et al. | Effectiveness of COVID-19 vaccines in a large
European haemodialysis cohort | Nephrology Dialysis
Transplantation | wrong study
duration | | Carrera et al. | How well do hemodialysis patients respond to
the BNT162b2 mRNA COVID-19 vaccine | Journal of the
American Society of
Nephrology | wrong intervention | | Castillo et al. | Vaccine effectiveness and duration of protection against symptomatic infections and severe Covid-19 outcomes in adults aged 50Å years and over, France, January to mid-December 2021 | Global
epidemiology | wrong outcome | | Castillo et al. | Vaccine effectiveness and duration of protection against symptomatic and severe Covid-19 during the first year of vaccination in France | Preprint - medRxiv | Already included | | Cerqueira-Silva
et al. | Effectiveness of CoronaVac, ChAdOx1 nCoV-19, BNT162b2, and Ad26.COV2.S among | The Lancet
Infectious Diseases | Already included | | | individuals with previous SARS-CoV-2 infection in Brazil: a test-negative, case-control study | | | |-----------------------------|--|--|-------------------------| | Cerqueira Silva
et al. | Influence of age on the effectiveness and duration of protection in Vaxzevria and CoronaVac vaccines | Preprint - medRxiv | wrong
intervention | | Cerqueira-Silva
et al. | Vaccine effectiveness of heterologous
CoronaVac plus BNT162b2 in Brazil | Nature Medicine | already assessed | | Cerqueira-Silva
et al. | Influence of age on the effectiveness and duration of protection of Vaxzevria and CoronaVac vaccines: A population-based study | Lancet Regional
Health. Americas | wrong intervention | | Cerqueira-Silva
et al. | Effectiveness of CoronaVac, ChAdOx1 nCoV-19, BNT162b2, and Ad26.COV2.S among individuals with previous SARS-CoV-2 infection in Brazil: a test-negative, case-control study | The Lancet. Infectious diseases | wrong study
duration | | Chadeau Hyam
et al. | REACT-1 round 15 final report: Increased breakthrough SARS-CoV-2 infections among adults who had received two doses of vaccine, but booster doses and first doses in children are providing important protection | Preprint - medRxiv | wrong
comparator | | Chadeau Hyam
et al. | REACT-1 study round 14: High and increasing prevalence of SARS-CoV-2 infection among school-aged children during September 2021 and vaccine effectiveness against infection in England | Preprint - medRxiv | wrong
comparator | | Chadeau-Hyam
et al. | SARS-CoV-2 infection and vaccine effectiveness in England (REACT-1): a series of cross-sectional random community surveys | The Lancet.
Respiratory
medicine | wrong
comparator | | Chagla | The BNT162b2 (BioNTech/Pfizer) vaccine had 95% efficacy against COVID-19 >=7 days after the 2nd dose | Annals of Internal
Medicine | wrong intervention | | Chariyalertsak et
al. | Effectiveness of heterologous 3rd and 4th dose COVID-19 vaccine schedules for SARS-CoV-2 infection during delta and omicron predominance in Thailand. | Preprint- Research
Square | wrong study
duration | | Charles Pon
Ruban et al. | Effectiveness of vaccination in preventing severe SARS CoV-2 infection in South India-a hospital-based cross-sectional study | Preprint - medRxiv | wrong study
design | | Charmet et al. | Impact of original, B.1.1.7, and B.1.351/P.1 SARS-CoV-2 lineages on vaccine effectiveness of two doses of COVID-19 mRNA vaccines: | The Lancet
Regional Health-
Europe | wrong
intervention | | | Results from a nationwide case-control study in France | | | |-----------------------|--|---|-------------------------| | Chauhan et al. | SARS-CoV-2 Vaccine-Induced Antibody
Response and Reinfection in Persons with Past
Natural Infection | Preprint - medRxiv | wrong intervention | | Chemaitelly et al. | Duration of mRNA vaccine protection against
SARS-CoV-2 Omicron BA.1 and BA.2
subvariants in Qatar |
 wrong study
duration | | Chemaitelly et al. | Duration of protection of BNT162b2 and
mRNA-1273 COVID-19 vaccines against
symptomatic SARS-CoV-2 Omicron infection
in Qatar | Preprint - medRxiv | already assessed | | Chemaitelly et al. | Duration of protection of BNT162b2 and
mRNA-1273 COVID-19 vaccines against
symptomatic SARS-CoV-2 Omicron infection
in Qatar | Preprint - medRxiv | Already assessed before | | Chemaitelly et
al. | mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar | Hand search;
Nature Medicine | wrong intervention | | Chemaitelly et al. | Pfizer-BioNTech mRNA BNT162b2 Covid-19 vaccine protection against variants of concern after one versus two doses | Journal of Travel
Medicine | duplicated | | Chemaitelly et
al. | MRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. | Nature Medicine | wrong intervention | | Chen et al. | Clinical Characteristics of COVID-19 Patients
Infected by the Omicron Variant of SARS-
CoV-2 | Frontiers in
Medicine | wrong outcome | | Chen et al. | Prediction of long-term kinetics of vaccine-
elicited neutralizing antibody and time-varying
vaccine-specific efficacy against the SARS-CoV-
2 Delta variant by clinical endpoint | BMC medicine | wrong intervention | | Chevallier et al. | Effectiveness of a third dose of BNT162b2 anti-
SARS-CoV-2 mRNA vaccine over a 6-month
follow-up period in allogenic hematopoietic
stem cells recipients | Hematological
Oncology | wrong study
duration | | Chin et al. | Effectiveness of COVID-19 vaccines among incarcerated people in California state prisons: retrospective cohort study | Clinical infectious
diseases : an official
publication of the | wrong study
design | | | | Infectious Diseases
Society of America | | |-----------------|--|---|-------------------------| | Chin et al. | Effectiveness of COVID-19 Vaccines among
Incarcerated People in California State Prisons:
A Retrospective Cohort Study | Preprint - medRxiv | wrong intervention | | Chin et al. | Effectiveness of the mRNA-1273 Vaccine during a SARS-CoV-2 Delta Outbreak in a Prison | The New England journal of medicine | wrong outcome | | Chodick et al. | The effectiveness of the TWO-DOSE BNT162b2 vaccine: analysis of real-world data | Clinical Infectious
Diseases | wrong intervention | | Christie et al. | Decreases in COVID-19 Cases, Emergency
Department Visits, Hospital Admissions, and
Deaths Among Older Adults Following the
Introduction of COVID-19 Vaccine - United
States, September 6, 2020-May 1, 2021 | MMWR. Morbidity and mortality weekly report | wrong population | | Chung et al. | Effectiveness of BNT162b2 and mRNA-1273 covid-19 vaccines against symptomatic SARS-CoV-2 infection and severe covid-19 outcomes in Ontario, Canada: Test negative design study | The BMJ | wrong intervention | | Clemens et al. | Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 lineages circulating in Brazil; an exploratory analysis of a randomised controlled trial | Preprint - Research
Square | wrong intervention | | Clemens et al. | Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 lineages circulating in Brazil | Nature communications | duplicated | | Clifford et al. | Effectiveness of BNT162b2 and ChAdOx1 against SARS-CoV-2 household transmission: a prospective cohort study in England | medRxiv | wrong
comparator | | Cocchio et al. | Differences in Immunological Evasion of the
Delta (B.1.617.2) and Omicron (B.1.1.529)
SARS-CoV-2 Variants: A Retrospective Study
on the Veneto Region's Population | International Journal of Environmental Research and Public Health | wrong study
duration | | Coggiola et al. | SARS-CoV-2 infection: efficacy of extensive vaccination of the healthcare workforce in a large Italian hospital | La Medicina del
lavoro | wrong study
design | | Cohen et al. | Comparative Efficacy over time of the mRNA-1273 (Moderna) vaccine and the | Research Square | wrong
comparator | | | BNT162b2 (Pfizer-BioNTech) vaccine | | | |----------------------------|---|---|-------------------------------| | Cohn et al. | SARS-CoV-2 vaccine protection and deaths among US veterans during 2021 | Science | wrong
comparator | | Cohn et al. | Breakthrough SARS-CoV-2 infections in 620,000 US Veterans, February 1, 2021 to August 13, 2021 | Preprint - medRxiv | wrong intervention | | Cohen et al. | Effectiveness of the BNT162b vaccine fourth dose in reducing SARS-CoV-2 infection among healthcare workers in Israel, a multi-center cohort study | Preprint - medRxiv | wrong
comparator | | Consonni et al. | Effectiveness of BNT162b2 COVID-19 vaccine among healthcare workers of a large hospital, Milan, Italy | Safety and Health at
Work | already assessed | | Consonni et al. | Effectiveness of COVID-19 vaccine in health care workers, Milan, Italy | Occupational and
Environmental
Medicine | Full text
unavailable | | Cook et al. | Clinical characteristics and outcomes of COVID-19 breakthrough infections among vaccinated patients with systemic autoimmune rheumatic diseases | Preprint - medRxiv | wrong outcome | | Corchado
Garcia et al. | Real-world effectiveness of Ad26.COV2.S adenoviral vector vaccine for COVID-19 | Preprint - medRxiv | wrong intervention | | Corchado-
Garcia et al. | Real-world effectiveness of Ad26. COV2. S adenoviral vector vaccine for COVID-19 | SSRN | wrong study
duration | | Corchado-
Garcia et al. | Analysis of the Effectiveness of the Ad26.COV2.S Adenoviral Vector Vaccine for Preventing COVID-19 | JAMA network open | wrong outcome | | Corral-Gudino
et al. | The Omicron wave and the waning of COVID-
19 vaccine effectiveness. Influence of vaccine
booster and age on confirmed infection
incidence | European journal of internal medicine | wrong study
duration | | Corrao et al. | Persistence of protection against SARS-CoV-2 clinical outcomes up to 9 months since vaccine completion: a retrospective observational analysis in Lombardy, Italy | The Lancet.
Infectious diseases | already assessed | | Corrao et al. | Persistence of protection against SARS-CoV-2 clinical outcomes up to 9 months since vaccine | The Lancet
Infectious Diseases | Data reported in figures only | | | completion: a retrospective observational analysis in Lombardy, Italy | | | |----------------|--|---|---| | Corrao et al. | Persistence of protection against SARS-CoV-2 clinical outcomes up to 9 months since vaccine completion: a retrospective observational analysis in Lombardy, Italy | The Lancet.
Infectious diseases | wrong
comparator | | Corrao et al. | Persistence of protection against SARS-CoV-2 clinical outcomes up to 9 months since vaccine completion: a retrospective observational analysis in Lombardy, Italy | The Lancet
Infectious Diseases | delayed exclusion - definition of unvaccinated group is unclear | | Corrao et al. | Balancing Benefits and Harms of COVID-19
Vaccines: Lessons from the Ongoing Mass
Vaccination Campaign in Lombardy, Italy | Vaccines | Wrong intervention | | Couderc et al. | Acceptance, efficacy, and safety of COVID-19 vaccination in older patients with cancer | Journal of geriatric oncology | wrong study
duration | | Cox et al. | An observational cohort study on the incidence of SARS-CoV-2 infection and B.1.1.7 variant infection in healthcare workers by antibody and vaccination status | Clinical Infectious
Diseases | duplicated | | Dagan et al. | BNT162b2 mRNA Covid-19 Vaccine in a
Nationwide Mass Vaccination Setting | The New England
Journal of Medicine | wrong intervention | | Dagan et al. | Effectiveness of the BNT162b2 mRNA COVID-19 vaccine in pregnancy | Nature Medicine | wrong intervention | | Dale et al. | Investigation of A SARS-CoV-2 Delta
(B.1.617.2) Variant Outbreak Among Residents
of a Skilled Nursing Facility and Vaccine
Effectiveness Analysis - Maricopa County,
Arizona, June-July 2021 | Clinical infectious
diseases: an official
publication of the
Infectious Diseases
Society of America | wrong study
duration | | Dahlem et al. | Humoral Response after SARS-CoV-2 mRNA
Vaccination in a Cohort of Hemodialysis
Patients and Kidney Transplant Recipients | Journal of the
American Society of
Nephrology | duplicated | | Danthu et al. | Humoral Response after SARS-Cov-2 mRNA
Vaccine in a Cohort of Hemodialysis Patients
and Kidney Transplant Recipients | Journal of the
American Society of
Nephrology: JASN | wrong intervention | | Das et al. | Relation of vaccination with severity, oxygen requirement and outcome of COVID-19 infection in Chattogram, Bangladesh | Preprint - medRxiv | wrong intervention | | Dash et al. | Breakthrough SARS-CoV-2 infections in an eastern state of India: A preliminary report | Preprint - Research
Square | wrong outcome | |---------------------------
--|--|-----------------------| | Dashdorj et al. | Direct Comparison of Antibody Responses to
Four SARS-CoV-2 Vaccines in Mongolia | Preprint - medRxiv | wrong outcome | | Deiana et al. | Impact of Full Vaccination with mRNA
BNT162b2 on SARS-CoV-2 Infection:
Genomic and Subgenomic Viral RNAs
Detection in Nasopharyngeal Swab and Saliva
of Health Care Workers | Microorganisms | wrong outcome | | Del Cura-Bilbao
et al. | Effectiveness of 3 COVID-19 Vaccines in
Preventing SARS-CoV-2 Infections, January-
May 2021, Aragon, Spain | Emerging infectious diseases | wrong outcome | | Demir et al. | Differences in clinical outcomes of COVID-19 among vaccinated and unvaccinated kidney transplant recipients | Vaccine | wrong outcome | | De Salazar et al. | High coverage COVID-19 mRNA vaccination rapidly controls SARS-CoV-2 transmission in long-term care facilities | Communications medicine | wrong study
design | | Dickerman et al. | Comparative effectiveness of BNT162B2 and mRNA-1273 vaccines in U.S. Veterans | New England
Journal of Medicine | wrong
comparator | | Domi et al. | The BNT162b2 vaccine is associated with lower new COVID-19 cases in nursing home residents and staff | Journal of the
American Geriatrics
Society | wrong intervention | | Donadio et al. | Asymptomatic COVID-19 cases among older patients despite BNT162b2 vaccination: A case series in a geriatric rehabilitation ward during an outbreak | The Journal of
Infection | wrong intervention | | Donato et al. | EFFECTIVENESS OF SARS-COV-2
VACCINATION IN PERITONEAL
DIALYSIS PATIENTS | Nephrology Dialysis
Transplantation | wrong intervention | | Drawz et al. | Effectiveness of BNT162b2 and mRNA-1273
Second Doses and Boosters for SARS-CoV-2
infection and SARS-CoV-2 Related
Hospitalizations: A Statewide Report from the
Minnesota Electronic Health Record
Consortium | Preprint - medRxiv | wrong
comparator | | Drawz et al. | Effectiveness of BNT162b2 and mRNA-1273
Second Doses and Boosters for SARS-CoV-2
infection and SARS-CoV-2 Related
Hospitalizations: A Statewide Report from the
Minnesota Electronic Health Record
Consortium | Clinical infectious
diseases : an official
publication of the
Infectious Diseases
Society of America | wrong
comparator | |-------------------|--|--|---------------------| | Du Plessis et al. | Efficacy of the ChAdOx1 nCoV-19 Covid-19
Vaccine against the B.1.351 Variant | New England
Journal of Medicine | duplicated | | Dulovic et al. | Diminishing immune responses against variants of concern in dialysis patients four months after SARS-CoV-2 mRNA vaccination | Preprint - medRxiv | wrong outcome | | Ebinger et al. | Antibody responses to the BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2 | Nature Medicine | wrong intervention | | Ebinger et al. | Prior COVID-19 Infection and Antibody
Response to Single Versus Double Dose mRNA
SARS-CoV-2 Vaccination | Preprint - medRxiv | wrong outcome | | Edelstein et al. | BNT 13b2 Pfizer vaccine protects against SARS-CoV-2 respiratory mucosal colonization even after prolonged exposure to positive family members | The Journal of
Hospital Infection | wrong outcome | | Efrati et al. | Safety and humoral responses to BNT162b2
mRNA vaccination of SARS-CoV-2 previously
infected and naive populations | Scientific Reports | wrong outcome | | Ella et al. | Efficacy, safety, and lot to lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): a, double-blind, randomised, controlled phase 3 trial | Preprint - medRxiv | wrong intervention | | Elliott et al. | Rapid increase in Omicron infections in
England during December 2021: REACT-1
study | Rapid increase in
Omicron infections
in England during
December 2021:
REACT-1 study | wrong outcome | | Elliott et al. | REACT-1 round 13 final report: exponential growth, high prevalence of SARS-CoV-2 and vaccine effectiveness associated with Delta variant in England during May to July 2021 | Hand search;
Preprint - medRxiv | wrong intervention | | Emani et al. | Increasing SARS-CoV2 cases, hospitalizations and deaths among the vaccinated elderly populations during the Omicron (B.1.1.529) variant surge in UK | Preprint - medRxiv | wrong population | | Emary et al. | Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial | The Lancet | wrong intervention | |------------------|---|--|-------------------------| | Embi et al. | Effectiveness of two-dose vaccination with mRNA COVID-19 vaccines against COVID-19-associated hospitalizations among immunocompromised adults-Nine States, January-September 2021 | American journal of
transplantation:
official journal of
the American
Society of
Transplantation and
the American
Society of
Transplant Surgeons | wrong outcome | | Embi et al. | Effectiveness of 2-Dose Vaccination with mRNA COVID-19 Vaccines Against COVID-19-Associated Hospitalizations Among Immunocompromised Adults - Nine States, January-September 2021 | MMWR. Morbidity and mortality weekly report | wrong study
duration | | Emborg et al. | Vaccine effectiveness of the BNT162b2 mRNA COVID-19 vaccine against RT-PCR confirmed SARS-CoV-2 infections, hospitalisations and mortality in prioritised risk groups | Preprint - medRxiv | wrong intervention | | Epaulard et al. | Symptoms and severity in vaccinated and unvaccinated patients hospitalised with SARS-CoV-2 delta (B.1.617.2) variant infection | Preprint - medRxiv | wrong
comparator | | Eick-Cost et al. | Effectiveness of mRNA-1273, BNT162b2, and JNJ-78436735 COVID-19 Vaccines among US Military Personnel before and during the Predominance of the Delta Variant | JAMA Network
Open | wrong study
duration | | Espi et al. | A prospective observational study for justification, safety, and efficacy of a third dose of mRNA vaccine in patients receiving maintenance hemodialysis | Kidney international | wrong outcome | | Espi et al. | Justification, safety, and efficacy of a third dose of mRNA vaccine in maintenance hemodialysis patients: a prospective observational study | Preprint - medRxiv | wrong outcome | | Eyre et al. | The impact of SARS-CoV-2 vaccination on Alpha & Delta variant transmission. medRxiv 2021 | Preprint].[Google
Scholar] | wrong study
duration | | Fabiani et al. | Effectiveness of mRNA vaccines and waning of protection against SARS-CoV-2 infection and severe covid-19 during predominant circulation | BMJ (Clinical research ed.) | wrong
comparator | | | of the delta variant in Italy: retrospective cohort study | | | |-----------------------|--|-------------------------------------|-------------------------| | Fabiani et al. | Effectiveness of an mRNA vaccine booster dose against SARS-CoV-2 infection and severe COVID-19 in persons aged >=60 years and other high-risk groups during predominant circulation of the Delta variant in Italy, 19 July to 12 December 2021 | Expert review of vaccines | Already assessed before | | Fabiani, M. et
al. | Effectiveness of an mRNA vaccine booster dose against SARS-CoV-2 infection and severe COVID-19 in persons aged >=60 years and other high-risk groups during predominant circulation of the delta variant in Italy, 19 July to 12 December 2021 | Expert Review of
Vaccines | wrong study
duration | | Fabiani et al. | Effectiveness of the comirnaty (BNT162b2,
BioNTech/Pfizer) vaccine in preventing SARS-
CoV-2 infection among healthcare workers,
Treviso province, Veneto region, Italy, 27
December 2020 to 24 March 2021 | Eurosurveillance | wrong intervention | | Fabiani et al. | Risk of SARS-CoV-2 infection and subsequent hospital admission and death at different time intervals since first dose of COVID-19 vaccine administration, Italy, 27 December 2020 to mid-April 2021 | Eurosurveillance | wrong intervention | | Falsey et al. | Phase 3 Safety and Efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19 Vaccine | The New England journal of medicine | wrong study
duration | | Fano et al. | COVID-19 vaccines coverage and effectiveness against SARS-CoV-2 infection among residents in the largest Health Authority of Lazio region (Italy): a population-based cohort study | Expert Review of Vaccines | No PDF available | | Fano et al. | COVID-19 vaccines coverage and effectiveness against SARS-CoV-2 infection among residents in the largest Health Authority of Lazio region (Italy): a population-based cohort study | Expert review of vaccines | wrong study
duration | | Farah et al. | Effectiveness of Pfizer-BioNTech Vaccine
Against COVID-19 Associated Hospitalizations
among Lebanese Adults ,â•75 years-
Lebanon,
April-May 2021 | Preprint - medRxiv | wrong outcome | | Faria et al. | Performance of vaccination with CoronaVac in a cohort of healthcare workers (HCW) - preliminary report | Preprint - medRxiv | wrong
intervention | | Felip et al. | 1591P Immune response after vaccination against SARS-COV-2 in lung cancer (LC) patients (p). Prospective study in the Medical Oncology Department at the Catalan Institute of Oncology-Badalona, Spain: COVID-lung vaccine | Annals of Oncology | wrong outcome | |-----------------|--|--|---| | Feng et al. | Modelling COVID-19 Vaccine Breakthrough
Infections in Highly Vaccinated Israel - the
effects of waning immunity and third
vaccination dose | Preprint - medRxiv | wrong study
design | | Feng et al. | Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection | Preprint - medRxiv | wrong outcome | | Fernando et al. | Neutralizing SARS-CoV-2 Antibody Response
and Protective Effect of 2 Doses of ChAdOx1
nCoV-19 and BBV152 Vaccines in hemodialysis
Patients: A Preliminary Report | Kidney
International
Reports | wrong outcome | | Fillmore et al. | Inadequate sars-cov-2 vaccine effectiveness in patients with multiple myeloma: A large nationwide veterans affairs study | Blood | wrong study
duration | | Firinu et al. | Evaluation of antibody response to BNT162b2 mRNA COVID-19 vaccine in patients affected by immune-mediated inflammatory diseases up to 5 months after vaccination | Preprint - Research
Square | wrong outcome | | Fisman et al. | Timing of Breakthrough Infection Risk After
Vaccination Against SARS-CoV-2 | Preprint - medRxiv | wrong
comparator | | Fisman et al. | Timing of Breakthrough Infection Risk After
Vaccination Against SARS-CoV-2 | Timing of
Breakthrough
Infection Risk After
Vaccination Against
SARS-CoV-2 | wrong
comparator | | Fisman et al. | Timing of Breakthrough Infection Risk After
Vaccination Against SARS-CoV-2 | Preprint - medRxiv | delayed exclusion - definition of unvaccinated group is unclear | | Flacco et al. | Risk of SARS-CoV-2 reinfection 18 months after primary infection: population-level observational study | Preprint - medRxiv | wrong study
duration | | Florea et al. | Durability of mRNA-1273 against COVID-19 in the time of Delta: Interim results from an observational cohort study | PloS one | wrong study
duration | | Folegatti et al. | Safety and immunogenicity of the ChAdOx1 nCoV-19 | Hand search; The Lancet | wrong outcome | |-------------------|---|---|---| | Fontan et al. | Time-Varying Effectiveness of Three Covid-19
Vaccines in Puerto Rico | Preprint - medRxiv | wrong outcome | | Foulkes et al. | COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): a prospective, multicentre, cohort study | The Lancet | wrong intervention | | Fournier et al. | SARS-CoV-2 Vaccination and Protection
Against Clinical Disease: A Retrospective Study,
Bouches-du-Rhône District, Southern France,
2021 | Frontiers in
Microbiology | delayed exclusion - baseline is <14 days, which is beyond our 30.5 days average post- receipt of second dose threshold. | | Frenck et al. | Safety, immunogenicity, and efficacy of the BNT162B2 covid-19 vaccine in adolescents | New England
Journal of Medicine | wrong intervention | | Friedrichs et al. | Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort | Annals of the
Rheumatic Diseases | wrong intervention | | Fu et al. | POS-941 the effectiveness of COVID-19 vaccine in reducing the severity and mortality rate among the end stage kidney disease with COVID-19 | Kidney
International
Reports | Full-text not found | | Fuca et al. | Antibody response to mRNA-1273 SARS-COV-2 vaccine in hemodialysis patients with and without prior COVID-19 | Clinical Journal of
the American
Society of
Nephrology | wrong intervention | | Furer et al. | Immunogenicity and safety of the BNT162B2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and general population: A multicenter study | Annals of the
Rheumatic Diseases | wrong intervention | | Gaio et al. | COVID-19 vaccine effectiveness among healthcare workers in Portugal: results from a hospital-based cohort study, December 2020 to November 2021 | Preprint - medRxiv | wrong
comparator | | Gaio et al. | COVID-19 vaccine effectiveness among
healthcare workers in Portugal: results from a
hospital-based cohort study, December 2020 to
November 2021 | Preprint - medRxiv | wrong intervention | |----------------|---|--|-------------------------| | Garvey et al. | Early observations on the impact of a healthcare worker COVID-19 vaccination programme at a major UK tertiary centre | The Journal of
Infection | wrong intervention | | Gazit et al. | Short term, relative effectiveness of four doses versus three doses of BNT162b2 vaccine in people aged 60 years and older in Israel: Retrospective, test negative, case-control study | The BMJ | wrong
comparator | | Gazit et al. | BNT162b2 mRNA Vaccine Effectiveness
Given Confirmed Exposure: Analysis of
Household Members of COVID-19 Patients | Clinical infectious
diseases : an official
publication of the
Infectious Diseases
Society of America | wrong
comparator | | Gazit et al. | BNT162b2 mRNA Vaccine Effectiveness
Given Confirmed Exposure; Analysis of
Household Members of COVID-19 Patients | Preprint - medRxiv | wrong intervention | | Gazit et al. | Comparing SARS-CoV-2 natural immunity to vaccine-induced immunity: reinfections versus breakthrough infections | Preprint - medRxiv | wrong intervention | | Gazit et al. | Relative Effectiveness of Four Doses Compared to Three Dose of the BNT162b2 Vaccine in Israel | Preprint - medRxiv | wrong intervention | | Gazit et al. | Relative Effectiveness of Four Doses Compared to Three Dose of the BNT162b2 Vaccine in Israel | Preprint - medRxiv | wrong study
duration | | Geysels et al. | SARS-CoV-2 vaccine breakthrough infections among healthcare workers in a large Belgian hospital network | Infection Control
and Hospital
Epidemiology | wrong intervention | | Ghadiri et al. | The study of COVID-19 infection following vaccination in patients with multiple sclerosis | Multiple sclerosis
and related
disorders | wrong outcome | | Ghosh et al. | COVISHIELD (AZD1222) VaccINe effectiveness among healthcare and frontline Workers of INdian Armed Forces: Interim results of VIN-WIN cohort study | Medical Journal
Armed Forces India | wrong intervention | | Giansante et al. | COVID-19 vaccine effectiveness among the staff of the Bologna Health Trust, Italy, December 2020-April 2021 | Acta Bio-medica:
Atenei Parmensis | wrong intervention | |-----------------------------|--|--|-------------------------| | Gilbert et al. | Immune Correlates Analysis of the mRNA-1273
COVID-19 Vaccine Efficacy Trial | Preprint - medRxiv | wrong intervention | | Gilboa et al. | Durability of the immune response to a third BNT162b2 dose | Preprint - medRxiv | wrong outcome | | Glampson et al. | North West London Covid-19 Vaccination
Programme: Real-world evidence for Vaccine
uptake and effectiveness: Retrospective Cohort
Study | JMIR Public Health
and Surveillance | wrong intervention | | Glatman-
Freedman et al. | Effectiveness of BNT162b2 Vaccine Booster against SARS-CoV-2 Infection and Breakthrough Complications, Israel | Emerging Infectious
Diseases | Already included | | Glatman-
Freedman et al. | The BNT162b2 vaccine effectiveness against new COVID-19 cases and complications of breakthrough cases: A nation-wide retrospective longitudinal multiple cohort analysis using individualised data | EBioMedicine | wrong study
duration | | Glatman-
Freedman et al. | Effectiveness of BNT162b2 Vaccine in
Adolescents during Outbreak of SARS-CoV-2
Delta Variant Infection, Israel, 2021 | Emerging infectious diseases | wrong study
duration | | Goes et al. | New infections by SARS-CoV-2 variants of concern after natural infections and post-vaccination in Rio de Janeiro, Brazil | Infection, Genetics and Evolution | wrong study
design | | Gohil et al. | Asymptomatic and Symptomatic COVID-19
Infections Among Health Care Personnel
Before and After Vaccination | JAMA network open | wrong
intervention | | Goldberg et al. | Protection of previous SARS-CoV-2 infection is similar to that of BNT162b2 vaccine protection: A three-month nationwide experience from Israel | Preprint - medRxiv | wrong intervention
 | Goldberg et al. | Protection of previous SARS-CoV-2 infection is similar to that of BNT162b2 vaccine protection: A three-month nationwide experience from Israel | American journal of epidemiology | wrong study
duration | | Goldberg et al. | Waning Immunity after the BNT162b2 Vaccine in Israel | The New England journal of medicine | wrong
comparator | | Goldin et al. | BNT162b2 mRNA COVID-19 (Comirnaty)
Vaccine Effectiveness in Elderly Patients Who
Live in Long-Term Care Facilities: A
Nationwide Cohort | Gerontology | wrong outcome | |-------------------|---|---|-------------------------| | Goldshtein et al. | Association Between BNT162b2 Vaccination and Incidence of SARS-CoV-2 Infection in Pregnant Women | JAMA | wrong intervention | | Gomes et al. | Is the BioNTech-Pfizer COVID-19 vaccination effective in elderly populations? Results from population data from Bavaria, Germany | Preprint - medRxiv | wrong intervention | | Gomes et al. | Is the BNT162b2 COVID-19 vaccine effective in elderly populations? Results from population data from Bavaria, Germany | PloS one | duplicated | | Gounant et al. | Efficacy of SARS-CoV-2 vaccine in thoracic cancer patients: a prospective study supporting a third dose in patients with minimal serologic response after two vaccine doses | Preprint - medRxiv | wrong intervention | | Gower et al. | Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant | New England
Journal of Medicine | duplicated | | Gower et al. | Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: Test negative case-control study | The BMJ | duplicated | | Gram et al. | Vaccine effectiveness against SARS-CoV-2 infection and COVID-19-related hospitalization with the Alpha, Delta and Omicron SARS-CoV-2 variants: a nationwide Danish cohort study | Preprint - medRxi | Already included | | Gram et al. | Vaccine effectiveness against SARS-CoV-2 infection, hospitalization, and death when combining a first dose ChAdOx1 vaccine with a subsequent mRNA vaccine in Denmark: A nationwide population-based cohort study | PLoS medicine | wrong study
duration | | Gram et al. | Vaccine effectiveness when combining the ChAdOx1 vaccine as the first dose with an mRNA COVID-19 vaccine as the second dose | Preprint - medRxiv | wrong intervention | | Grannis et al. | Interim estimates of COVID-19 vaccine effectiveness against COVID-19,Äìassociated emergency department or urgent care clinic encounters and hospitalizations among adults during SARS-CoV-2 B. 1.617. 2 (Delta) variant | Morbidity and
Mortality Weekly
Report | wrong study
duration | | | predominance, ÄîNine States, June, ÄìAugust 2021 | | | |-----------------------|---|---|-------------------------| | Grant et al. | Impact of SARS-CoV-2 Delta variant on incubation, transmission settings and vaccine effectiveness: Results from a nationwide case-control study in France | The Lancet regional health. Europe | wrong study
duration | | Gray et al. | SAFETY and EFFECTIVENESS of the Ad26.COV2.S VACCINE in SOUTH AFRICA | Topics in Antiviral
Medicine | No PDF available | | Gray et al. | Vaccine effectiveness against hospital admission in South African health care workers who received a homologous booster of Ad26.COV2 during an Omicron COVID19 wave: Preliminary Results of the Sisonke 2 Study | Preprint - medRxiv | wrong intervention | | Grima et al. | Relative Virulence of SARS-CoV-2 Among
Vaccinated and Unvaccinated Individuals
Hospitalized with SARS-CoV-2 | Preprint - medRxiv | wrong study
duration | | Grewal et al. | Effectiveness of a fourth dose of covid-19 mRNA vaccine against the omicron variant among long term care residents in Ontario, Canada: test negative design study | BMJ (Clinical research ed.) | wrong study
duration | | Grewal et al. | Effectiveness of a Fourth Dose of COVID-19
Vaccine among Long-Term Care Residents in
Ontario, Canada: Test-Negative Design Study | | wrong study
duration | | Grgič Vitek et
al. | mRNA vaccine effectiveness against hospitalisation due to severe acute respiratory infection (SARI) COVID-19 during Omicron variant predominance estimated from real-world surveillance data, Slovenia, February to March 2022 | Euro surveillance: bulletin European sur les maladies transmissibles = European communicable disease bulletin | wrong study
duration | | Guarino et al. | Effectiveness of SARS-Cov-2 vaccination in liver transplanted patients: the debate is open! | Journal of
Hepatology | wrong outcome | | Guha et al. | The incidence and in-hospital mortality of COVID-19 patients post-vaccination in eastern India | Preprint - medRxiv | wrong study
design | | Haas et al. | Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data | The Lancet | wrong intervention | | Haas et al. | Infections, Hospitalizations, and Deaths
Averted Via Direct Effects of the Pfizer-
BioNTech BNT162b2 mRNA COVID-19
Vaccine in a Nationwide Vaccination Campaign,
Israel | Preprint - SSRN | wrong intervention | |------------------|---|-------------------------------------|--| | Hall et al. | Effectiveness and durability of protection against future SARS-CoV-2 infection conferred by COVID-19 vaccination and previous infection; findings from the UK SIREN prospective cohort study of healthcare workers March 2020 to September 2021 | Preprint - medRxiv | delayed exclusion - a published version of this article is available | | Hall et al. | Randomized Trial of a Third Dose of mRNA-
1273 Vaccine in Transplant Recipients | New England
Journal of Medicine | wrong
comparator | | Hall et al. | Protection against SARS-CoV-2 after covid-19 vaccination and previous infection | New England
Journal of Medicine | Already assessed before | | Hammerman et al. | Effectiveness of the BNT162b2 Vaccine after
Recovery from Covid-19 | The New England journal of medicine | wrong intervention | | Hammerman et al. | Effectiveness of the BNT162B2 vaccine after recovery from CoviD-19 | New England
Journal of Medicine | wrong outcome | | Hansen et al. | Vaccine effectiveness against SARS-CoV-2 infection with the Omicron or Delta variants following a two-dose or booster BNT162b2 or mRNA-1273 vaccination series: A Danish cohort study | Preprint - medRxiv | delayed exclusion - last follow-up period is 91-150 days, which is insufficient to meet our 112-day lower limit. | | Hara et al. | Real-World Effectiveness of the mRNA
COVID-19 Vaccines in Japan: A Case-Control
Study | Vaccines | wrong study
duration | | Hardt et al. | Efficacy and Safety of a Booster Regimen of Ad26.COV2.S Vaccine against Covid-19 | Preprint - medRxiv | wrong
comparator | | Hardt et al. | Efficacy and Safety of a Booster Regimen of Ad26.COV2.S Vaccine against Covid-19 | Preprint - medRxiv | wrong intervention | | Harris et al. | Impact of vaccination on household transmission of SARS-COV-2 in England | Hand search;
Preprint - medRxiv | wrong intervention | | Havers et al. | COVID-19-associated hospitalizations among vaccinated and unvaccinated adults ≥18 years - COVID-NET, 13 states, January 1 - July 24, 2021 | Preprint - medRxiv | wrong outcome | | Herishanu et al. | Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia | Blood | wrong outcome | |---------------------|---|---------------------------------|------------------------| | Hermosilla et al. | Comparative effectiveness and safety of homologous two-dose ChAdOx1 versus heterologous vaccination with ChAdOx1 and BNT162b2 | Nature communications | wrong
comparator | | Herzberg et al. | SARS-CoV-2-antibody response in health care workers after vaccination or natural infection in a longitudinal observational study | Preprint - medRxiv | wrong intervention | | Heudel et al. | Reduced SARS-CoV-2 infection and death after
two doses of COVID-19 vaccines in a series of
1503 cancer patients | Annals of Oncology | wrong intervention | | Hines et al. | SARS-CoV-2 VACCINE EFFECTIVENESS
for IN-HOSPITAL MORTALITY-ZAMBIA,
2021 | Topics in Antiviral
Medicine | wrong publication type | | Hitchings et al. | Effectiveness of the ChAdOx1 vaccine in the elderly during SARS-CoV-2 Gamma variant transmission in Brazil | Preprint - medRxiv | wrong intervention | | Hitchings et al. | Effectiveness of ChAdOx1 vaccine in older adults during SARS-CoV-2 Gamma variant circulation in Sao Paulo | Nature
Communications | duplicated | | Hoehl et al. | A new group at increased risk of a SARS-CoV-2 infection emerges: The recently
vaccinated | Vaccine | wrong intervention | | Hollinghurst et al. | COVID-19 Infection Risk amongst 14,104
Vaccinated Care Home Residents: A national
observational longitudinal cohort study in
Wales, United Kingdom, December 2020 to
March 2021 | Preprint - medRxiv | wrong intervention | | Horne et al. | Waning effectiveness of BNT162b2 and ChAdOx1 COVID-19 vaccines over six months since second dose: a cohort study using linked electronic health records | Preprint - medRxiv | Already included | | Hoque et al. | Serial evaluation of anti-SARS-CoV-2 IgG antibody and breakthrough infections in BNT162b2 Vaccinated migrant workers from Bangladesh | Preprint - medRxiv | wrong
comparator | | Horst | Covid-19 and Patients with IBD: Who Is at Highest Risk for Severe Complications? | Digestive Diseases and Sciences | wrong publication type | | Hu et al. | Effectiveness of inactive COVID-19 vaccines against severe illness in B.1.617.2 (Delta) variant-infected patients in Jiangsu, China | Preprint - medRxiv | wrong intervention | |-----------------|---|-----------------------------------|--| | Hulme et al. | Comparative effectiveness of ChAdOx1 versus BNT162b2 COVID-19 vaccines in Health and Social Care workers in England: a cohort study using OpenSAFELY | Preprint - medRxiv | wrong intervention | | Hung & Poland | Single-dose Oxford-AstraZeneca COVID-19 vaccine followed by a 12-week booster | The Lancet | wrong intervention | | Hyams et al. | Effectiveness of BNT162b2 and ChAdOx1 nCoV-19 COVID-19 vaccination at preventing hospitalisations in people aged at least 80 years: a test-negative, case-control study | The Lancet
Infectious Diseases | wrong intervention | | Hyams et al. | Assessing the Effectiveness of BNT162b2 and ChAdOx1nCoV-19 COVID-19 Vaccination in Prevention of Hospitalisations in Elderly and Frail Adults: A Single Centre Test Negative Case-Control Study | Hand search;
Preprint - SSRN | wrong
intervention | | Iliaki et al. | COVID-19 Vaccine Efficacy in a Diverse
Urban Healthcare Worker Population | Preprint - medRxiv | wrong intervention | | Ioannou et al. | Effectiveness of mRNA COVID-19 vaccine boosters against infection, hospitalization and death: a target trial emulation in the omicron (B.1.1.529) variant era | Preprint - medRxiv | wrong outcome | | Ioannou et al. | COVID-19 Vaccination Effectiveness Against
Infection or Death in a National U.S. Health
Care System : A Target Trial Emulation Study | Annals of internal medicine | wrong study
duration | | Ioannou et al. | COVID-19 Vaccination Effectiveness Against
Infection or Death in a National U.S. Health
Care System A Target Trial Emulation Study | Annals of Internal
Medicine | wrong study
duration | | Irizarry et al. | Time-Varying Effectiveness of Three Covid-19
Vaccines in Puerto Rico | SSRN | delayed exclusion - study ID 18-3 is a more recent version of this study | | Iskander et al. | Effectiveness of vaccination against reported SARS-CoV-2 infection in United States Coast Guard personnel between May and August 2021: A time-series analysis | Preprint - medRxiv | wrong
comparator | | Islam et al. | Comparative effectiveness over time of the mRNA-1273 (Moderna) vaccine and the BNT162b2 (Pfizer-BioNTech) vaccine | Nature communications | wrong study
duration | |---|---|--|---| | Ismail et al. | Effectiveness of BNT162b2 mRNA and ChAdOx1 adenovirus vector COVID-19 vaccines on risk of hospitalisation among older adults in England: an observational study using surveillance data | Hand search -
Public Health
England preprint | wrong
intervention | | Isnardi et al. | An Argentinean cohort of patients with rheumatic and immune-mediated diseases vaccinated for SARS-CoV-2: the SAR-CoVAC Registry-protocol and preliminary data | Clinical
rheumatology | wrong study
duration | | Israel et al. | Large-scale study of antibody titer decay
following BNT162b2 mRNA vaccine or SARS-
CoV-2 infection | Preprint - medRxiv | wrong outcome | | Israel, et al. | Elapsed time since BNT162b2 vaccine and risk of SARS-CoV-2 infection in a large cohort | Preprint - medRxiv | delayed exclusion - study included only vaccinated individuals. The authors presented risk of COVID infection according to the time since the vaccination (greater or lower than 146 days) in Table 3 (but no indication of individual level follow-up time). | | Issac et al. | SARS-CoV-2 Breakthrough Infections among
the Healthcare Workers Post-Vaccination with
ChAdOx1 nCoV-19 Vaccine in the South
Indian State of Kerala | Preprint - medRxiv | wrong intervention | | Italian Instituto
Superiore di
Sanita | Impact of COVID-19 vaccination on the risk of SARS-CoV-2 infection and hospitalization and death in Italy | Report forwarded
by PHAC | wrong
comparator | | Jablonska et al. | The real-life impact of vaccination on COVID-
19 mortality in Europe and Israel | Preprint - medRxiv | wrong population | | Jacobson et al. | Post-vaccination SARS-CoV-2 infections and incidence of presumptive B.1.427/B.1.429 variant among healthcare personnel at a northern California academic medical center | Clinical Infectious
Diseases | wrong intervention | |---------------------------|--|---|-------------------------| | Jacobson et al. | Post-vaccination SARS-CoV-2 infections and incidence of the B.1.427/B.1.429 variant among healthcare personnel at a northern California academic medical center | Preprint - medRxiv | duplicated | | Jacquemont et al. | Minimal change disease relapse following SARS-CoV-2 mRNA vaccine | Kidney
International | wrong study
design | | Jagadeesh
Kumar et al. | Clinical outcomes in vaccinated individuals hospitalized with Delta variant of SARS-CoV-2 | Preprint - medRxiv | wrong intervention | | Jalali et al. | Increased household transmission and immune escape of the SARS-CoV-2 Omicron variant compared to the Delta variant: evidence from Norwegian contact tracing and vaccination data | Preprint - medRxiv | wrong study
duration | | Jalali et al. | Increased household transmission and immune escape of the SARS-CoV-2 Omicron variant compared to the Delta variant: evidence from Norwegian contact tracing and vaccination data | Preprint - medRxiv | wrong study
duration | | Jara et al. | Effectiveness of an Inactivated SARS-CoV-2
Vaccine in Chile | Hand search; New
England Journal of
Medicine | wrong
intervention | | Jara et al. | Effectiveness of homologous and heterologous booster doses for an inactivated SARS-CoV-2 vaccine: a large-scale prospective cohort study | The Lancet Global
Health | wrong study
duration | | Jawad et al. | EVALUATION OF COVID-19 VACCINES
EFFICACY IN IRAQI PEOPLES | Wiadomosci
lekarskie (Warsaw,
Poland : 1960) | wrong study
duration | | Jeulin et al. | Comparative analysis of post-vaccination anti-
spike IgG antibodies in old Nursing Home
Residents and in middle-aged Healthcare
workers | Preprint - medRxiv | wrong outcome | | John et al. | Effectiveness of COVID-19 Viral Vector
Ad.26.COV2.S Vaccine and Comparison with
mRNA Vaccines in Cirrhosis | Clinical
gastroenterology
and hepatology: the
official clinical
practice journal of
the American
Gastroenterological
Association | wrong study
duration | | Joshi et al. | Vaccine effectiveness to protect against moderate or severe disease in COVID cases: A prospective cohort study | Medical Journal
Armed Forces India | wrong study
duration | |------------------|--|--|---| | June Choe et al. | Safety and effectiveness of BNT162b2 mRNA
Covid-19 vaccine in adolescents | Vaccine | wrong population | | Junghans | Technical note: The calculated real world BNT162b2 vaccine efficacy was 88% when accounting for asymptomatic cases | Human vaccines & immunotherapeutics | wrong population | | Kale et al. | Clinicogenomic analysis of breakthrough infections by SARS CoV2 variants after ChAdOx1 nCoV-19 vaccination in healthcare workers | Hand search;
Preprint - medRxiv | wrong intervention | | Kamar et al. | Three Doses of an mRNA Covid-19 Vaccine in Solid-Organ Transplant Recipients | The New England
Journal of Medicine | wrong intervention | | Kannian et al. | Booster and anergic effects of the Covishield vaccine among healthcare workers in South India | Preprint - medRxiv | wrong outcome | | Katz et al. | Early effectiveness of BNT162b2 Covid-19 vaccine in preventing SARS-CoV-2 infection in healthcare personnel in six Israeli hospitals (CoVEHPI) | Vaccine | wrong outcome | |
Katz et al. | Covid-19 Vaccine Effectiveness in Healthcare
Personnel in six Israeli Hospitals (CoVEHPI) | Preprint - medRxiv | wrong intervention | | Kaur et al. | Occurrence of COVID-19 in priority groups receiving ChAdOx1 nCoV-19 coronavirus vaccine (recombinant): a preliminary analysis from north India | Journal of Medical
Virology | wrong intervention | | Keegan et al. | Progress of the Delta variant and erosion of vaccine effectiveness, a warning from Utah | Preprint - medRxiv | wrong study
design | | Keehner et al. | SARS-CoV-2 Infection after Vaccination in
Health Care Workers in California | The New England
Journal of Medicine | wrong intervention | | Keehner, et al | Resurgence of SARS-CoV-2 Infection in a Highly Vaccinated Health System Workforce. | The New England
Journal of Medicine | delayed exclusion - a series of cross- sectional analysis over months (no indication of individual level follow-up times) | | Keeling et al. | Waning, boosting and a path to endemicity for SARS-CoV-2 | Preprint - medRxiv | wrong population | |------------------|--|--|-------------------------------| | Kepten et al. | BNT162B2 mRNA covid-19 vaccine in a nationwide mass vaccination setting | New England
Journal of Medicine | duplicated | | Kertes et al. | Effectiveness of the mRNA BNT162b2 vaccine six months after vaccination: Findings from a large Israeli HMO. | Hand search;
Preprint - medRxiv | wrong control | | Khan &
Mahmud | Effectiveness of SARS-CoV-2 vaccination in a
Veterans Affairs Cohort of Inflammatory Bowel
Disease Patients with Diverse Exposure to
Immunosuppressive Medications | Gastroenterology | wrong study
duration | | Khan et al. | Safety and effectiveness of the BNT162B2 mRNA COVID-19 vaccine in a nationwide cohort of patients with inflammatory bowel disease | Inflammatory Bowel
Diseases | Full-text
unavailable | | Khan et al. | Safety and effectiveness of the BNT162B2 mRNA COVID-19 vaccine in a nationwide cohort of patients with inflammatory bowel disease | Gastroenterology | Full text
unavailable | | Khan et al. | Effectiveness of SARS-CoV-2 Vaccination in a
Veterans Affairs Cohort of Patients With
Inflammatory Bowel Disease With Diverse
Exposure to Immunosuppressive Medications | Gastroenterology | wrong intervention | | Khoury et al. | COVID-19 vaccine - Long term immune decline and breakthrough infections | Vaccine | wrong
comparator | | Kim et al. | mRNA Vaccine Effectiveness against COVID-
19 among Symptomatic Outpatients Aged
≥16 Years in the United States, February -
May 2021 | The Journal of
Infectious Diseases | wrong intervention | | Kim et al. | mRNA Vaccine Effectiveness against COVID-
19 among Symptomatic Outpatients
Aged >=16 Years in the United States, February
- May 2021 | The Journal of infectious diseases | wrong
comparator | | Kim et al. | Effectiveness of 2 and 3 mRNA COVID-19
Vaccines Doses against Omicron and Delta-
Related Outpatient Illness among Adults,
October 2021 - February 2022 | Preprint - medRxiv | wrong
comparison | | Kim et al. | Effectiveness of Booster mRNA Vaccines against SARS-CoV-2 Infection in Elderly | Clinical infectious diseases: an official publication of the | wrong study
duration; Data | | | Population, South Korea, October 2021 -
January 2022 | Infectious Diseases
Society of America | reported in figures only | |-----------------|---|---|----------------------------| | Kirsebom et al. | Effectiveness of ChAdOx1-S COVID-19
Booster Vaccination against the Omicron and
Delta variants in England | Preprint - medRxiv | already included
before | | Kislaya et al. | Comparative complete scheme and booster effectiveness of COVID-19 vaccines in preventing SARS-CoV-2 infections with SARS-CoV-2 Omicron (BA.1) and Delta (B.1.617.2) variants | Preprint - medRxiv | wrong
comparator | | Kislaya et al. | Comparative Effectiveness of Coronavirus
Vaccine in Preventing Breakthrough Infections
among Vaccinated Persons Infected with Delta
and Alpha Variants | Emerging infectious diseases | wrong study
duration | | Kislaya et al. | Comparative complete scheme and booster effectiveness of COVID-19 vaccines in preventing SARS-CoV-2 infections with SARS-CoV-2 Omicron (BA.1) and Delta (B.1.617.2) variants | Preprint - medRxiv | wrong
comparison | | Kislaya et al. | Delta variant and mRNA Covid-19 vaccines effectiveness: higher odds of vaccine infection breakthroughs | Preprint - medRxiv | wrong intervention | | Kiss et al. | Nationwide Effectiveness of First and Second SARS-CoV2 Booster Vaccines during the Delta and Omicron Pandemic Waves in Hungary (HUN-VE 2 Study) | Preprint - medRxiv | wrong intervention | | Kiss et al. | Nationwide Effectiveness of First and Second SARS-CoV2 Booster Vaccines during the Delta and Omicron Pandemic Waves in Hungary (HUN-VE 2 Study) | Preprint - medRxiv | wrong intervention | | Kissling et al. | Effectiveness of complete primary vaccination against COVID-19 at primary care and community level during predominant Delta circulation in Europe: multicentre analysis, I-MOVE-COVID-19 and ECDC networks, July to August 2021 | Eurosurveillance | already included
before | | Kissling et al. | Vaccine effectiveness against symptomatic SARS-CoV-2 infection in adults aged 65 years and older in primary care: I-MOVE-COVID-19 project, Europe, December 2020 to May 2021 | Hand search;
Eurosurveillance | wrong intervention | | Klaassen et al. | Population immunity to pre-Omicron and Omicron SARS-CoV-2 variants in US states and counties through December 1, 2021 | Preprint - medRxiv | wrong intervention | |------------------|--|---|-------------------------| | Klaser et al. | COVID-19 due to the B.1.617.2 (Delta) variant compared to B.1.1.7 (Alpha) variant of SARS-CoV-2: two prospective observational cohort studies | Preprint - medRxiv | wrong study
duration | | Knobel et al. | Coronavirus disease 2019 (COVID-19) mRNA vaccine effectiveness in asymptomatic healthcare workers | Infection Control
and Hospital
Epidemiology | wrong intervention | | Knobel et al. | COVID-19 mRNA vaccine effectiveness in asymptomatic healthcare workers | Infection Control
and Hospital
Epidemiology | wrong intervention | | Knoll et al. | Oxford-AstraZeneca COVID-19 vaccine efficacy | The Lancet | wrong publication type | | Kodera et al. | Estimation of Real-World Vaccination
Effectiveness of mRNA COVID-19 Vaccines
against Delta and Omicron Variants in Japan | Vaccines | results in figures | | Kontou et al. | Antibody response following a two-dose mRNA vaccination regimen, in health care workers of a tertiary hospital in Athens, Greece | Journal of
Personalized
Medicine | wrong intervention | | Korves et al. | Relative effectiveness of booster vs. 2-dose mRNA Covid-19 vaccination in the Veterans Health Administration: Self-controlled risk interval analysis | | wrong study
duration | | Korves et al. | Relative effectiveness of booster vs. 2-dose mRNA Covid-19 vaccination in the Veterans Health Administration: Self-controlled risk interval analysis | Preprint - medRxiv | wrong study
duration | | Koshy | Effectiveness of ChAdOx1 nCOV-19 Vaccine:
Experience of a tertiary care institute | Medical Journal
Armed Forces India | wrong outcome | | Kridin et al. | Determinants and Effectiveness of BNT162b2
mRNA Vaccination Among Patients with
Atopic Dermatitis: A Population-Based Study | American Journal of
Clinical
Dermatology | wrong outcome | | Krisztina et al. | Real-time monitoring of the effectiveness of six COVID-19 vaccines in Hungary in 2021 using the screening method | Preprint - medRxiv | wrong intervention | | Krisztina et al. | Real-time monitoring of the effectiveness of six COVID-19 vaccines in Hungary in 2021 using the screening method | Preprint - medRxiv | wrong
comparison | |------------------------------|---|------------------------------------|-------------------------| | Kugeler et al. | Estimating the number of symptomatic SARS-CoV-2 infections among vaccinated individuals in the United State - January-April, 2021 | Preprint - medRxiv | wrong study
design | | Kustin et al. | Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2 mRNA vaccinated individuals | Preprint - medRxiv | wrong study
design | | Kwon et al. | mRNA Vaccine Effectiveness Against COVID-
19 Hospitalization Among Solid Organ
Transplant Recipients | The Journal of infectious diseases | wrong study
duration | | Lafuente-
Lafuente et al. | COVID-19 Outbreaks in Nursing Homes
Despite Full Vaccination with BNT162b2 of a
Majority of Residents | Gerontology | wrong study
duration | | Lamacchia et al. | Clinical and immunological features of SARS-CoV-2 breakthrough infections in vaccinated individuals requiring hospitalization | Preprint - medRxiv | wrong outcome | | Landre et al. | 1600P Suboptimal response to COVID-19 mRNA vaccines in older patients with cancer | Annals of Oncology | wrong
comparator | | Lange
et al. | Immune response to COVID-19 mRNA vaccine-a pilot study | Vaccines | wrong intervention | | Lanini et al. | A single intramuscular injection of monoclonal antibody MAD0004J08 induces in healthy adults SARS-CoV-2 neutralising antibody titres exceeding those induced by infection and vaccination | Preprint - medRxiv | wrong intervention | | Lanthier et al. | [In subjects 16 years of age and older, is messenger RNA vaccine BNT162b2 against COVID-19 effective and safe?] | La Revue de
Médecine Interne | wrong intervention | | Larese Filon et al. | Incidence of COVID-19 infection in hospital workers from March 1, 2020 to May 31, 2021 routinely tested, before and after vaccination with BNT162B2 | Scientific reports | wrong study
duration | | Lauring et al. | Clinical severity of, and effectiveness of mRNA vaccines against, covid-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: prospective observational study | BMJ (Clinical research ed.) | wrong outcome | | Lauring et al. | Clinical Severity and mRNA Vaccine
Effectiveness for Omicron, Delta, and Alpha
SARS-CoV-2 Variants in the United States: A
Prospective Observational Study | Preprint - medRxiv | wrong
comparator | |------------------|---|---|----------------------------------| | Layan et al. | Impact of BNT162b2 vaccination and isolation on SARS-CoV-2 transmission in Israeli households: an observational study | American journal of epidemiology | wrong outcome | | Layan et al. | Impact of BNT162b2 vaccination and isolation on SARS-CoV-2 transmission in Israeli households: an observational study | Preprint - medRxiv | wrong intervention | | Lee et al. | Vaccine effectiveness against COVID-19 breakthrough infections in patients with cancer (UKCCEP): a population-based test-negative case-control study | The Lancet
Oncology | Excluded because of critical RoB | | Lee et al. | POS-950 COVID-19 IN END STAGE
KIDNEY DISEASE WITH RENAL
REPLACEMENT THERAPIES: OUR
EXPERIENCE IN PENANG | Kidney
International
Reports | Full-text not found | | Lefèvre et al. | Beta SARS-CoV-2 variant and BNT162b2 vaccine effectiveness in long-term care facilities in France | The Lancet. Healthy longevity | wrong study
duration | | Lefèvre et al. | Impact of B. 1.351 (beta) SARS-CoV-2 variant on BNT162b2 mRNA vaccine effectiveness in long-term care facilities of eastern France: a retrospective cohort study | Preprint - medRxiv | duplicated | | Leo | Effectiveness of the mRNA BNT162b2 vaccine against SARS-CoV-2 severe infections in the Israeli over 60 population: a temporal analysis done by using the national surveillance data | Preprint - medRxiv | wrong study
duration | | Lev Zion et al. | COVID-19 vaccine effectiveness in inflammatory bowel disease patients on tumornecrosis factor inhibitors: Real world data from a massvaccination campaign | Journal of Crohn's
and Colitis | Full-text
unavailable | | Lev-Tzion et al. | COVID-19 vaccine is effective in inflammatory bowel disease patients and is not associated with disease exacerbation | Clinical
gastroenterology
and hepatology: the
official clinical
practice journal of
the American
Gastroenterological
Association | wrong outcome | | Lev-Tzion et al. | COVID-19 Vaccine Is Effective in
Inflammatory Bowel Disease Patients and Is
Not Associated With Disease Exacerbation | Clinical
Gastroenterology
and Hepatology | wrong
comparison | |----------------------|--|--|---| | Lewis et al. | Effectiveness of mRNA Vaccines Against
COVID-19 Hospitalization by Age and Chronic
Medical Conditions Burden Among
Immunocompetent US Adults, March-August
2021 | Journal of
Infectious Diseases | wrong study
duration | | Lewis et al. | Effectiveness of the Ad26.COV2.S (Johnson & Johnson) COVID-19 Vaccine for Preventing COVID-19 Hospitalizations and Progression to High Disease Severity in the United States | Clinical infectious diseases | wrong
comparator | | Lewis et al. | Effectiveness of mRNA vaccines in preventing COVID-19 hospitalization by age and burden of chronic medical conditions among immunocompetent US adults, March-August 2021 | The Journal of infectious diseases | wrong study
duration | | Lillie et al. | First dose of BNT162b2 mRNA vaccine in a Health Care Worker cohort is associated with reduced symptomatic and asymptomatic SARS-CoV-2 infection | Clinical Infectious
Diseases | wrong intervention | | Lim et al. | POS-962 A survey of covid-19 infection among vaccinated and unvaccinated patients on renal replacement therapy: a single centre experience | Kidney
International
Reports | Full-text not found | | Lin et al. | Effectiveness of COVID-19 vaccination among people living with HIV during an outbreak | Topics in Antiviral
Medicine | wrong study
duration | | Lin et al. | Effectiveness of Covid-19 Vaccines over a 9-
Month Period in North Carolina | The New England journal of medicine | wrong intervention | | Lind et al. | Effectiveness of Primary and Booster COVID-
19 mRNA Vaccination against Omicron Variant
SARS-CoV-2 Infection in People with a Prior
SARS-CoV-2 Infection | Preprint - medRxiv | Already included | | Lippi &
Mattiuzzi | Primary COVID-19 vaccine cycle and booster doses efficacy: analysis of Italian nationwide vaccination campaign | European journal of public health | delayed exclusion - baseline is < 6 month, which is beyond our 30.5 days average post- receipt of second dose threshold | | Lippi et al. | Real-world analysis of age-dependent efficacy of COVID-19 vaccination | Research Square | wrong
comparator | |---------------------|--|--|--| | Liu et al. | A Retrospective Analysis of COVID-19 mRNA
Vaccine Breakthrough Infections ,Äì Risk
Factors and Vaccine Effectiveness | Preprint - medRxiv | delayed exclusion - no comparative data for unvaccinated individuals | | Lo Sasso et al. | Evaluation of Anti-SARS-Cov-2 S-RBD IgG
Antibodies after COVID-19 mRNA BNT162b2
Vaccine | Diagnostics (Basel,
Switzerland) | wrong outcome | | Lopez Bernal et al. | Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant | The New England
Journal of Medicine | duplicated | | Lopez Bernal et al. | Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study | BMJ (Clinical
Research Ed.) | wrong intervention | | Lumley et al. | An observational cohort study on the incidence of SARS-CoV-2 infection and B.1.1.7 variant infection in healthcare workers by antibody and vaccination status | Preprint - medRxiv | duplicated | | Lumley et al. | An observational cohort study on the incidence of SARS-CoV-2 infection and B.1.1.7 variant infection in healthcare workers by antibody and vaccination status | Clinical Infectious
Diseases | wrong
intervention | | Lustig et al. | Superior immunogenicity and effectiveness of the third compared to the second BNT162b2 vaccine dose | Nature Immunology | wrong study
duration | | Lytras et al. | Comparative effectiveness and durability of COVID-19 vaccination against death and severe disease in an ongoing nationwide mass vaccination campaign | Journal of Medical
Virology | already included
before | | Lytras et al. | Comparative effectiveness and durability of COVID-19 vaccination against death and severe disease in an ongoing nationwide mass vaccination campaign | Journal of medical virology | wrong
comparator | | Lytras et al. | Comparative effectiveness of COVID-19 vaccination against death and severe disease in an ongoing nationwide mass vaccination campaign | Preprint - medRxiv | duplicated | | Ma et al. | Effectiveness of Covid-19 Vaccines against the SARS-COV-2-Delta (B.1.617.2) in China-A Real World Study | Preprint - medRxiv | wrong outcome | |----------------|---|--|-------------------------| | Ma et al. | Effectiveness of Covid-19 Vaccines against the SARS-COV-2-Delta (B.1.617.2) in China - A Real World Study | Preprint - medRxiv | wrong study
duration | | Ma et al. | Effectiveness of adenovirus type 5 vectored and inactivated COVID-19 vaccines against symptomatic COVID-19, COVID-19 pneumonia, and severe COVID-19 caused by the B.1.617.2 (Delta) variant: Evidence from an outbreak in Yunnan, China, 2021 | Vaccine | wrong study
duration | | Machado et al. | SAFETY OF VACCINATION AGAINST
SARS-COV-2 IN PEOPLE WITH
RHEUMATIC AND MUSCULOSKELETAL
DISEASES: RESULTS FROM THE EULAR
CORONAVIRUS VACCINE (COVAX)
PHYSICIAN-REPORTED REGISTRY | Rheumatology
(United Kingdom) | wrong
outcome | | Madhi et al. | ChAdOx1 nCoV-19 Vaccine Efficacy against
the B.1.351 Variant. Reply | The New England
Journal of Medicine | wrong publication type | | Madhi et al. | Safety and efficacy of the ChAdOx1 nCoV-19 (AZD1222) Covid-19 vaccine against the B.1.351 variant in South Africa | Preprint - medRxiv | duplicated | | Maeda et al. | Effectiveness of mRNA COVID-19 vaccines against symptomatic SARS-CoV-2 infections during the Delta variant epidemic in Japan: Vaccine Effectiveness Real-time Surveillance for SARS-CoV-2 (VERSUS) | Preprint - medRxiv | wrong
comparator | | Maeda et al. | Effectiveness of mRNA COVID-19 vaccines against symptomatic SARS-CoV-2 infections during the Delta variant epidemic in Japan: Vaccine Effectiveness Real-time Surveillance for SARS-CoV-2 (VERSUS) | Preprint - medRxiv | wrong
comparator | | Maeda et al. | Effectiveness of mRNA COVID-19 vaccines against symptomatic SARS-CoV-2 infections during the Delta variant epidemic in Japan: Vaccine Effectiveness Real-time Surveillance for SARS-CoV-2 (VERSUS) | Clinical infectious
diseases : an official
publication of the
Infectious Diseases
Society of America | wrong
comparison | | Magen et al. | Fourth Dose of BNT162b2 mRNA Covid-19
Vaccine in a Nationwide Setting | The New England journal of medicine | wrong
comparison | | Magen et al. | Fourth Dose of BNT162b2 mRNA Covid-19
Vaccine in a Nationwide Setting | New England
Journal of Medicine | wrong study
duration | |--------------------|---|--|-------------------------| | Mahase et al. | Covid-19: Pfizer vaccine's efficacy declined from 96% to 84% four months after second dose, company reports | BMJ (Clinical
Research Ed.) | wrong publication type | | Malhotra et al. | COVID-19 infection, and reinfection, and vaccine effectiveness against symptomatic infection among health care workers in the setting of omicron variant transmission in New Delhi, India | The Lancet regional health | wrong intervention | | Mallow et al. | Real world SARS-COV-2 vaccine effectiveness in a Miami academic institution | The American journal of emergency medicine | wrong study
duration | | Maltezou et al. | COVID-19 vaccination significantly reduces morbidity and absenteeism among healthcare personnel: A prospective multicenter study | Vaccine | wrong study
duration | | Maneikis et al. | Immunogenicity of the BNT162b2 COVID-19 mRNA vaccine and early clinical outcomes in patients with haematological malignancies in Lithuania: a national prospective cohort study | The Lancet
Haematology | wrong intervention | | Manley et al. | SARS-CoV-2 vaccine effectiveness and breakthrough infections in maintenance dialysis patients | Preprint - medRxiv | wrong outcome | | Manley et al. | SARS-CoV-2 vaccine effectiveness and breakthrough infections in maintenance dialysis patients | Preprint - medRxiv | wrong study
duration | | Marra et al. | Effectiveness of heterologous COVID-19 vaccine booster dosing in Brazilian healthcare workers, 2021 | Clinical infectious
diseases : an official
publication of the
Infectious Diseases
Society of America | wrong study
duration | | Marra et al. | Effectiveness of two COVID-19 vaccines (viral vector and inactivated viral vaccine) against SARS-CoV-2 infection in a cohort of healthcare workers | Infection control
and hospital
epidemiology | wrong outcome | | Martellucci et al. | Effectiveness of COVID-19 Vaccines in the General Population of an Italian Region before and during the Omicron Wave | Vaccines | wrong study
duration | | Martellucci et al. | Effectiveness of COVID-19 Vaccines in the
General Population of an Italian Region before
and during the Omicron Wave | Vaccines | wrong study
duration | |--------------------------|---|---|-------------------------| | Martinez-Baz et al. | Effectiveness of COVID-19 vaccines in preventing SARS-CoV-2 infection and hospitalisation, Navarre, Spain, January to April 2021 | Eurosurveillance | wrong intervention | | Martínez-Baz et al. | Product-specific COVID-19 vaccine effectiveness against secondary infection in close contacts, Navarre, Spain, April to August 2021 | Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin | wrong
comparator | | Martinot et al. | Outbreak of SARS-CoV-2 infection in a long-
term care facility after COVID-19 BNT162b2
mRNA vaccination | Clinical
Microbiology and
Infection | wrong
intervention | | Massimo et al. | COVID-19 convalescent plasma donors: impact of vaccination on antibody levels, breakthrough infections and reinfection rate | Preprint - medRxiv | wrong
intervention | | Massonnaud et al. | Evaluating COVID-19 booster vaccination strategies in a partially vaccinated population: a modeling study | SSRN | wrong study
design | | Mateo-Urdiales
et al. | Risk of SARS-CoV-2 infection and subsequent hospital admission and death at different time intervals since first dose of COVID-19 vaccine administration, Italy, 27 December 2020 to mid-April 2021 | Hand search;
Eurosurveillance | wrong intervention | | Mateus et al. | Low dose mRNA-1273 COVID-19 vaccine generates durable T cell memory and antibodies enhanced by pre-existing crossreactive T cell memory | Preprint - medRxiv | wrong outcome | | Mathema et al. | Post-vaccination SARS-COV-2 among healthcare workers in New Jersey: a genomic epidemiological study | Preprint - medRxiv | wrong intervention | | Mattar et al. | Efficacy of the CoronaVac® Vaccine in a
Region of the Colombian Amazon, Was Herd
Immunity Achieved? | Preprint - Research
Square | wrong
intervention | | Mattiuzzi &
Lippi | Primary COVID-19 vaccine cycle and booster doses efficacy: analysis of Italian nationwide vaccination campaign | European journal of public health | wrong
comparator | | Mattiuzzi &
Lippi | Efficacy of COVID-19 vaccine booster doses in older people | European geriatric medicine | wrong
comparator | |----------------------|--|---|-------------------------| | Mattiuzzi &
Lippi | COVID-19 vaccination is highly effective
to prevent SARS-CoV-2 circulation | Research Square | wrong
comparator | | Mazagatos et al. | Effectiveness of mRNA COVID-19 vaccines in preventing SARS-CoV-2 infections and COVID-19 hospitalisations and deaths in elderly long-term care facility residents, Spain, weeks 53 2020 to 13 2021 | Eurosurveillance | wrong intervention | | Mazuecos et al. | Breakthrough Infections Following mRNA
SARS-CoV-2 Vaccination in Kidney Transplant
Recipients | Transplantation | wrong outcome | | McConaghy et al. | An assessment of the impact of the vaccination program on coronavirus disease 2019 (COVID-19) outbreaks in care homes in Northern Ireland-A pilot study | Infection Control
and Hospital
Epidemiology | wrong intervention | | McConeghy et al. | Effectiveness of a SARS-CoV-2 mRNA vaccine booster dose for prevention of infection, hospitalization or death in two nation-wide nursing home systems | Preprint - medRxiv | wrong study
duration | | McConeghy et al. | Effectiveness of a SARS-CoV-2 mRNA vaccine booster dose for prevention of infection, hospitalization or death in two nation-wide nursing home systems | Preprint - medRxiv | wrong outcome | | McDade et al. | Durability of antibody response to vaccination and surrogate neutralization of emerging variants based on SARS-CoV-2 exposure history | Scientific Reports | wrong intervention | | McEllistrem et al. | Introduction of the BNT162b2 vaccine during a COVID-19 nursing home outbreak | American Journal of
Infection Control | wrong intervention | | McEvoy et al. | Real-world Effectiveness of 2-dose SARS-CoV-
2 Vaccination in Kidney Transplant Recipients | Preprint - medRxiv | wrong
comparator | | McKeigue et al. | Vaccine efficacy against severe COVID-19 in relation to delta variant (B.1.617.2) and time since second dose in patients in Scotland (REACT-SCOT): a case-control study | The Lancet
Respiratory
Medicine | data in figures | | McKeigue et al. | Vaccine efficacy against severe COVID-19 in relation to delta variant (B.1.617.2) and time since second dose in patients in Scotland (REACT-SCOT): a case-control study | The Lancet.
Respiratory
medicine | wrong outcome | | McKeigue et al. | Efficacy of vaccination against severe COVID-
19 in relation to Delta variant and time since
second dose: the REACT-SCOT case-control
study | Preprint - medRxiv | wrong
comparator | |--------------------------|--|---|-------------------------| | McKeon et al. | Real-world effectiveness and immunogenicity of mRNA-1273 in dialysis patients | Journal of the
American Society of
Nephrology | wrong intervention | | McLean et al. | mRNA COVID-19 vaccine effectiveness against SARS-CoV-2 infection in a prospective community cohort, rural Wisconsin, November 2020-December
2021 | Preprint - medRxiv | wrong outcome | | McLean et al. | mRNA COVID-19 vaccine effectiveness against SARS-CoV-2 infection in a prospective community cohort, rural Wisconsin, November 2020 to December 2021 | Influenza and other respiratory viruses | wrong study
duration | | McMenamin et al. | Vaccine effectiveness of two and three doses of BNT162b2 and CoronaVac against COVID-19 in Hong Kong | Preprint - medRxiv | wrong study
duration | | Medeiros et al. | Reduced T cell and antibody responses to inactivated coronavirus vaccine among males and individuals above 55 years old | Preprint - medRxiv | wrong intervention | | Medina-Pestana
et al. | Inactivated Whole-virus Vaccine Triggers Low
Response Against SARS-CoV-2 Infection
Among Renal Transplant Patients: Prospective
Phase 4 Study Results | Transplantation | wrong intervention | | Meggiolaro et
al. | Effectiveness of vaccination against symptomatic and asymptomatic SARS-CoV-2 infection: a systematic review and meta-analysis | Preprint - medRxiv | wrong study
design | | Mehta &
Silveira | COVID-19 after two doses of mRNA vaccines in kidney transplant recipients | American Journal of
Transplantation | wrong intervention | | Menascu et al. | Safety and efficacy of COVID-19 Pfizer-BNT162b2 m-RNA vaccine in young MS population | Multiple Sclerosis
Journal | wrong
comparator | | Menni et al. | Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study | The Lancet
Infectious Diseases | wrong intervention | | Menni et al. | COVID-19 vaccine waning and effectiveness and side-effects of boosters: a prospective community study from the ZOE COVID Study | The Lancet.
Infectious diseases | Excluded for RoB | | Meo et al. | Effect of Pfizer/BioNTech and Oxford/AstraZeneca vaccines against COVID-19 morbidity and mortality in real-world settings at countrywide vaccination campaign in Saudi Arabia | European review
for medical and
pharmacological
sciences | wrong outcome | |---------------------------|--|---|-------------------------| | Meo et al. | COVID-19 vaccines: Comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna vaccines | European Review
for Medical and
Pharmacological
Sciences | wrong study
design | | Meylan | Efficacy and safety of BioNTech/Pfizer and Moderna vaccines | Revue Medicale
Suisse | wrong publication type | | Meylan | Safety and efficacy of the Oxford-AstraZeneca vaccine: Interim analysis of four randomized controlled trials | Revue Medicale
Suisse | wrong intervention | | Michos et al. | Association of total and neutralizing SARS-CoV-2 spike -receptor binding domain antibodies with epidemiological and clinical characteristics after immunization with the 1st and 2nd doses of the BNT162b2 vaccine | Vaccine | wrong outcome | | Mielke et al. | Fully Vaccinated and Boosted Patients
Requiring Hospitalization for COVID-19: an
Observational Cohort Analysis | Preprint - medRxiv | wrong outcome | | Mielke et al. | Boosters reduce in-hospital mortality in patients with COVID-19: An observational cohort analysis | Lancet Regional
Health. Americas | wrong study
duration | | Mirahmadizade
h et al. | Effectiveness of Coronavirus Disease 2019 Vaccines in Preventing Infection, Hospital Admission, and Death: A Historical Cohort Study Using Iranian Registration Data During Vaccination Program | Open forum infectious diseases | wrong study
duration | | Mirahmadizade
h et al. | "Effectiveness of COVID-19 Vaccines in
preventing Infectiousness, Hospitalization and
Mortality: A Historical Cohort Study Using
Iranian Registration Data During Vaccination
program" | Preprint - medRxiv | wrong outcome | | Mirahmadizade
h et al. | ,ÄúEffectiveness of COVID-19 Vaccines in
preventing Infectiousness, Hospitalization and
Mortality: A Historical Cohort Study Using
Iranian Registration Data During Vaccination
program,Äù | Preprint - medRxiv | wrong study
duration | | Miron et al. | Effectiveness of COVID-19 Vaccines
BNT162b2 and mRNA-1273 by Days from
Vaccination: A Reanalysis of Clinical Trial Data | Preprint - SSRN | wrong intervention | |------------------|--|--|-------------------------| | Mittelman et al. | Effectiveness of the BNT162b2mRNA Covid-
19 Vaccine in Patients with Hematological
Neoplasms | Blood | wrong study
duration | | Mizrahi et al. | Correlation of SARS-CoV-2 Breakthrough
Infections to Time-from-vaccine; Preliminary
Study | Preprint - medRxiv | wrong outcome | | Mizrahi et al. | Correlation of SARS-CoV-2-breakthrough infections to time-from-vaccine | Nature
Communications | duplicated | | Molani et al. | Time to reinfection and vaccine breakthrough SARS-CoV-2 infections: a retrospective cohort study | Preprint - medRxiv | wrong outcome | | Moline et al. | Effectiveness of COVID-19 mRNA vaccines against infection during an outbreak of SARS-CoV-2 Beta (B.1.351) variant in a skilled nursing facility - Virginia, March-April 2021 | Clinical infectious
diseases: an official
publication of the
Infectious Diseases
Society of America | wrong study
duration | | Moline et al. | Effectiveness of COVID-19 Vaccines in Preventing Hospitalization Among Adults Aged >=65 Years - COVID-NET, 13 States, February-April 2021 | Morbidity and
Mortality Weekly
Report | wrong intervention | | Moncunill et al. | Determinants of early antibody responses to COVID-19 mRNA vaccines in exposed and naive healthcare workers | Preprint - medRxiv | wrong study
duration | | Monge et al. | Effectiveness of mRNA vaccine boosters against infection with the SARS-CoV-2 omicron (B.1.1.529) variant in Spain: a nationwide cohort study | The Lancet. Infectious diseases | wrong study
duration | | Monge et al. | Effectiveness of a second dose of an mRNA vaccine against SARS-CoV-2 Omicron infection in individuals previously infected by other variants | Clinical infectious
diseases : an official
publication of the
Infectious Diseases
Society of America | wrong study
duration | | Monge et al. | Direct and Indirect Effectiveness of mRNA
Vaccination against Severe Acute Respiratory
Syndrome Coronavirus 2 in Long-Term Care
Facilities, Spain | Emerging Infectious
Diseases | wrong intervention | | | | | T | |-----------------------------|---|--|--------------------------| | Monge et al. | Direct and Indirect Effectiveness of mRNA
Vaccination against Severe Acute Respiratory
Syndrome Coronavirus 2 in Long-Term Care
Facilities, Spain | Emerging infectious diseases | wrong study
duration | | Montejano-
Hervas et al. | Safety, Effectiveness, and Immunogenicity 6
Months After BNT162B2 mRNA Vaccine in
Frail Nursing Home Residents | Drugs and Aging | wrong outcome | | Mor et al. | BNT162b2 Vaccination efficacy is marginally affected by the SARS-CoV-2 B.1.351 variant in fully vaccinated individuals | Preprint - medRxiv | wrong population | | Mor et al. | BNT162b2 vaccine effectiveness was marginally affected by the SARS-CoV-2 beta variant in fully vaccinated individuals | Journal of clinical epidemiology | duplicated | | Moreira et al. | Safety and Efficacy of a Third Dose of
BNT162b2 Covid-19 Vaccine | The New England journal of medicine | wrong outcome | | Moustsen
Helms et al. | Vaccine effectiveness after 1st and 2nd dose of
the BNT162b2 mRNA Covid-19 Vaccine in
long-term care facility residents and healthcare
workers—a Danish cohort study | Preprint - medRxiv | wrong intervention | | Muhsen et al. | Effectiveness of BNT162b2 mRNA COVID-19 vaccine against acquisitions of SARS-CoV-2 among health care workers in long-term care facilities: a prospective cohort study | Clinical infectious
diseases : an official
publication of the
Infectious Diseases
Society of America | wrong study
duration | | Muhsen et al. | Effectiveness of BNT162b2 mRNA COVID-19 vaccine against acquisitions of SARS-CoV-2 among health care workers in long-term care facilities: a prospective cohort study | Clinical infectious
diseases : an official
publication of the
Infectious Diseases
Society of America | wrong study
duration | | Mukim et al. | Covid-19 Vaccines available in India | Combinatorial chemistry & high throughput screening | Full-text
unavailable | | Muller et al. | Booster Vaccination Decreases 28-Day All-
Cause Mortality of the Elderly Hospitalized Due
to SARS-CoV-2 Delta Variant | Vaccines | wrong outcome | | Munitz et al. | BNT162b2 vaccination effectively prevents the rapid rise of SARS-CoV-2 variant B.1.1.7 in high-risk populations in Israel | Cell Reports
Medicine | wrong intervention | | Murali et al. | Effectiveness of the ChAdOx1 nCoV-19
Coronavirus Vaccine (CovishieldTM) in
Preventing SARS-CoV2 Infection, Chennai,
Tamil Nadu, India, 2021 | Vaccines | wrong study
duration | |-----------------------
---|--|-------------------------| | Murali et al. | Effectiveness of ChAdOx1 nCoV-19 Corona
Virus Vaccine (CovishieldTM) in preventing
SARS-CoV2 infection, Chennai, Tamil Nadu,
India, 2021 | Preprint - medRxi | wrong study
duration | | Murari et al. | Retrospective cohort study of COVID-19 in patients of the Brazilian public health system with SARS-COV-2 Omicron variant infection | | wrong study
duration | | Murillo-Zamora et al. | Effectiveness of BNT162b2 COVID-19
Vaccine in Preventing Severe Symptomatic
Infection among Healthcare Workers | Medicina (Kaunas,
Lithuania) | wrong intervention | | Murt et al. | Antibody responses to the SARS-CoV-2 vaccines in hemodialysis patients: Is inactivated vaccine effective? | Therapeutic apheresis and dialysis: official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy | wrong
comparator | | Musser et al. | Delta variants of SARS-CoV-2 cause significantly increased vaccine breakthrough COVID-19 cases in Houston, Texas | Preprint - medRxiv | wrong study
design | | Naaber et al. | Declined antibody responses to COVID-19 mRNA vaccine within first three months | Preprint - medRxiv | wrong outcome | | Naito et al. | Real-world evidence for the effectiveness and
breakthrough of BNT162b2 mRNA COVID-19
vaccine at a medical center in Japan | Human vaccines & immunotherapeutics | wrong outcome | | Naleway et al. | Incidence of SARS-CoV-2 Infection,
Emergency Department Visits, and
Hospitalizations Because of COVID-19 Among
Persons Aged ,â•12 Years, by COVID-19
Vaccination Status - Oregon and Washington,
July 4-September 25, 2021 | MMWR. Morbidity and mortality weekly report | wrong study
duration | | Nanduri et al. | Effectiveness of Pfizer-BioNTech and Moderna Vaccines in Preventing SARS-CoV-2 Infection Among Nursing Home Residents Before and During Widespread Circulation of the SARS-CoV-2 B.1.617.2 (Delta) Variant - National Healthcare Safety Network, March 1-August 1, 2021 | Morbidity and
Mortality Weekly
Report | wrong study
design | |------------------|---|---|-------------------------| | Naranbhai et al. | Comparative immunogenicity and effectiveness of mRNA-1273, BNT162b2 and Ad26.COV2.S COVID-19 vaccines | Preprint - medRxiv | wrong population | | Nasreen et al. | Effectiveness of COVID-19 vaccines against hospitalization and death in Canada: A multiprovincial test-negative design study | Preprint - medRxi | wrong outcome | | Nasreen et al. | Effectiveness of COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario | Nature
microbiology | wrong study
duration | | Nasreen et al. | Effectiveness of COVID-19 vaccines against hospitalization and death in Canada: A multi provincial test-negative design study | | wrong outcome | | Nasreen et al. | Effectiveness of COVID-19 vaccines against variants of concern in Ontario, Canada | Preprint - medRxiv | wrong intervention | | Nasreen et al. | Effectiveness of COVID-19 vaccines against variants of concern, Canada | Hand search;
Preprint - medRxiv | wrong intervention | | Nasreen et al. | Effectiveness of mRNA and ChAdOx1
COVID-19 vaccines against symptomatic
SARS-CoV-2 infection and severe outcomes
with variants of concern in Ontario | Preprint - medRxiv | wrong study
duration | | Natarajan et al. | Effectiveness of Homologous and Heterologous COVID-19 Booster Doses Following 1 Ad.26.COV2.S (Janssen [Johnson & Dose Against COVID-19-Associated Emergency Department and Urgent Care Encounters and Hospitalizations Among Adults - VISION Network, 10 States, December 2021-March 2022 | MMWR. Morbidity and mortality weekly report | wrong study
duration | | Naylor et al. | Effectiveness of first, second, and third COVID-19 vaccine doses in solid organ transplant recipients: A population-based cohort study from Canada | American Journal of
Transplantation | wrong study
duration | | Naylor et al. | Effectiveness of first, second, and third COVID-19 vaccine doses in solid organ transplant recipients: A population-based cohort study from Canada | American journal of
transplantation:
official journal of
the American
Society of
Transplantation and
the American
Society of
Transplant Surgeons | wrong study
duration | |---------------------|---|--|-------------------------| | Nguyen et al. | Comparative effectiveness of ChAdOx1 versus BNT162b2 vaccines against SARS-CoV-2 infections in England and Wales: A cohort analysis using trial emulation in the Virus Watch community data | Preprint - medRxiv | wrong
comparator | | Nguyen et al. | Comparative effectiveness of different primary vaccination courses on mRNA based booster vaccines against SARs-COV-2 infections: A time-varying cohort analysis using trial emulation in the Virus Watch community cohort | Preprint - medRxiv | wrong
comparator | | Nomura et al. | Age and smoking predict antibody titres at 3 months after the second dose of the BNT162b2 COVID-19 vaccine | Preprint - medRxiv | wrong outcome | | Nordström et
al. | Effectiveness of heterologous ChAdOx1 nCoV-
19 and mRNA prime-boost vaccination against
symptomatic Covid-19 infection in Sweden: A
nationwide cohort study | The Lancet regional health. Europe | wrong study
duration | | Nunes et al. | mRNA vaccines effectiveness against COVID-
19 hospitalizations and deaths in older adults: a
cohort study based on data-linkage of national
health registries in Portugal | Preprint - medRxiv | wrong intervention | | Nunes et al. | mRNA vaccine effectiveness against COVID-
19-related hospitalisations and deaths in older
adults: a cohort study based on data linkage of
national health registries in Portugal, February
to August 2021 | Euro surveillance :
bulletin Europeen
sur les maladies
transmissibles =
European
communicable
disease bulletin | wrong study
duration | | Nunez Lopez et al. | Effectiveness of the BNT162b2 mRNA Covid-
19 vaccine in Spanish healthcare workers | Enfermedades
Infecciosas y
Microbiologia
Clinica | wrong intervention | | Nyberg et al. | Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study | Lancet (London,
England) | wrong outcome | |---------------------------|---|---|--| | Oliver et al. | Vaccine Effectiveness Against SARS-CoV-2
Infection and Severe Outcomes in the
Maintenance Dialysis Population in Ontario,
Canada | Journal of the
American Society of
Nephrology | wrong study
duration | | Oliver et al. | Vaccine Effectiveness Against SARS-CoV-2
Infection and Severe Outcomes in the
Maintenance Dialysis Population in Ontario,
Canada | Journal of the
American Society of
Nephrology: JASN | wrong study
duration | | Oliveira et al. | Assessment of Clinical Effectiveness of
BNT162b2 COVID-19 Vaccine in US
Adolescents | JAMA network open | wrong population | | Olson et al. | Effectiveness of BNT162B2 Vaccine against
Critical Covid-19 in Adolescents | New England
Journal of Medicine | wrong population | | Olson et al. | Effectiveness of Pfizer-BioNTech mRNA
Vaccination Against COVID-19 Hospitalization
Among Persons Aged 12-18 Years - United
States, June-September 2021 | MMWR. Morbidity and mortality weekly report | wrong study
duration | | Oster et al. | Association Between Exposure Characteristics and the Risk for COVID-19 Infection Among Health Care Workers With and Without BNT162b2 Vaccination | JAMA network open | wrong study
design | | Ostropolets &
Hripcsak | COVID-19 vaccination effectiveness rates by week and sources of bias | Preprint - medRxiv | delayed exclusion - VE for full vaccination is not stratified by time since full vaccination (see appendix 7-9). As for VE that is stratified by time (Figure 3 and 4), time is calculated from receipt of first dose, not second. There are no week-by-week estimates for single-dose Janssen because | | | | | of the small sample size | |--------------------
--|---|--| | Paetzold et al. | The effects of rapid mass vaccination against SARS-CoV-2 and its Variants-of-Concern: Evidence from an early VoCs hotspot | Preprint – Research
Square | wrong study
design | | Painter et al. | Rapid induction of antigen-specific CD4+ T cells guides coordinated humoral and cellular immune responses to SARS-CoV-2 mRNA vaccination | Preprint - bioRxiv | wrong outcome | | Pajon et al. | Initial Analysis of Viral Dynamics and
Circulating Viral Variants During the mRNA-
1273 Phase 3 COVE Trial | Preprint - medRxiv | wrong study
duration | | Palich et al. | Weak immunogenicity after a single dose of SARS-CoV-2 mRNA vaccine in treated cancer patients | Annals of Oncology | wrong outcome | | Palinkas et al. | Effectiveness of COVID-19 Vaccination in
Preventing All-Cause Mortality among Adults
during the Third Wave of the Epidemic in
Hungary: Nationwide Retrospective Cohort
Study | Vaccines | wrong study
duration/timeline
is not clear/no
baseline data | | Palladino et al. | A quantitative risk-benefit analysis of ChAdOx1 nCoV-19 vaccine among people under 60 in Italy | Preprint - medRxiv | wrong study
design | | Panasoff et al. | Specific antibody response of patients with common variable immunodeficiency to BNT162b2 coronavirus disease 2019 vaccination | Annals of Allergy,
Asthma and
Immunology | wrong outcome | | Papousek et al. | Experience with the production of COVID-19 convalescent plasma in a tertiary hospital | Vox Sanguinis | wrong outcome | | Paranthaman et al. | Effectiveness of BNT162b2 and ChAdOx-1 vaccines in residents of long-term care facilities in England using a time-varying proportional hazards model | Age and Ageing | Excluded for RoB | | Pardo-Seco et al. | Evaluation of BNT162b2 Vaccine Effectiveness in Galicia, Northwest Spain | International journal of environmental research and public health | wrong study
duration | | Paris et al. | Effectiveness of mRNA-BNT162b2, mRNA-
1273, and ChAdOx1 nCoV-19 vaccines against | Clinical
Microbiology and
Infection | wrong intervention | | | COVID-19 in healthcare workers: an observational study using surveillance data | | | |------------------------------|---|---|-------------------------| | Parry et al. | Extended interval BNT162b2 vaccination enhances peak antibody generation in older people | Preprint - medRxiv | wrong outcome | | Parry et al. | Antibody responses after first and second
Covid-19 vaccination in patients with chronic
lymphocytic leukaemia | Blood Cancer
Journal | wrong outcome | | Parry et al. | Antibody responses after first and second
Covid-19 vaccination in patients with chronic
lymphocytic leukaemia | Blood cancer
Journal | wrong outcome | | Pascucci et al. | Evaluation of the Effectiveness and Safety of
the BNT162b2 COVID-19 Vaccine in the
Vaccination Campaign among the Health
Workers of Fondazione Policlinico
Universitario Agostino Gemelli IRCCS | International journal of environmental research and public health | wrong study
duration | | Passalacqua et
al. | Efficacy of SARS-CoV-2 vaccination in cancer patients during treatment: A prospective observational study (ANTICOV trial) | Tumori | wrong study
duration | | Patalon et al. | Waning effectiveness of the third dose of the BNT162b2 mRNA COVID-19 vaccine | Nature
Communications | wrong study
duration | | Patalon et al. | Waning Effectiveness of the Third Dose of the BNT162b2 mRNA COVID-19 Vaccine | | wrong
comparator | | Paternina-
Caicedo et al. | Effectiveness of CoronaVac and BNT162b2
COVID-19 mass vaccination in Colombia: A
population-based cohort study | Lancet Regional
Health. Americas | wrong study
duration | | Pattni et al. | Effectiveness of the BNT162b2 (Pfizer-BioNTech) and the ChAdOx1 nCoV-19 (Oxford-AstraZeneca) vaccines for reducing susceptibility to infection with the Delta variant (B.1.617.2) of SARS-CoV-2 | Preprint - medRxiv | wrong outcome | | Paulsen et al. | Immune Thrombocytopenic Purpura after vaccination with COVID-19 Vaccine (ChAdOx1 nCov-19) | Blood | wrong study
design | | Pawlowski et al. | FDA-authorized mRNA COVID-19 vaccines are effective per real-world evidence synthesized across a multi-state health system | Med (New York,
N.Y.) | wrong intervention | | Payne et al. | Sustained T cell immunity, protection and boosting using extended dosing intervals of BNT162b2 | Hand search;
Preprint - SSRN | wrong outcome | |---------------------|--|--|-------------------------| | Peet et al. | COVID-19 infection and vaccination in patients with autoinflammatory diseases on biologics | Pediatric
Rheumatology | wrong outcome | | Pefaur Penna et al. | POS-912 EFFECTIVENESS OF SARS-COV 2
VACCINATION IN KIDNEY
TRANSPLANT PATIENTS IN CHILE | Kidney
International
Reports | Full-text not found | | Pegu et al. | Durability of mRNA-1273 vaccine-induced antibodies against SARS-CoV-2 variants | Science (New York,
N.Y.) | wrong outcome | | Peled et al. | BNT162b2 vaccination in heart transplant recipients: Clinical experience and antibody response | Journal of Heart and
Lung
Transplantation | wrong intervention | | Perkmann et al. | Serum antibody response to BNT162b2 after natural SARS-CoV-2 infection | European Journal of
Clinical
Investigation | wrong outcome | | Perry et al. | COVID-19 vaccine uptake and effectiveness in adults aged 50 years and older in Wales UK: a 1.2m population data-linkage cohort approach | Human Vaccines
and
Immunotherapeutic
s | wrong study
duration | | Petrie et al. | Effectiveness of COVID-19 mRNA vaccine booster dose relative to primary series during a period of Omicron circulation | Preprint - medRxi | wrong study
duration | | Petrovic et al. | Early Effectiveness of Four SARS-CoV-2
Vaccines in Preventing COVID-19 among
Adults Aged ≥60 Years in Vojvodina, Serbia | Vaccines | wrong study
duration | | Piernas et al. | Associations of BMI with COVID-19 vaccine uptake, vaccine effectiveness, and risk of severe COVID-19 outcomes after vaccination in England: a population-based cohort study | The lancet. Diabetes & endocrinology | wrong study
duration | | Pilishvili et al. | Interim Estimates of Vaccine Effectiveness of
Pfizer-BioNTech and Moderna COVID-19
Vaccines Among Health Care Personnel - 33
U.S. Sites, January-March 2021 | Morbidity and
Mortality Weekly
Report | wrong intervention | | Plumb et al. | Effectiveness of COVID-19 mRNA
Vaccination in Preventing COVID-19-
Associated Hospitalization Among Adults with
Previous SARS-CoV-2 Infection - United States,
June 2021-February 2022 | MMWR. Morbidity and mortality weekly report | wrong study
duration | | Polinski et al. | Durability of the Single-Dose Ad26.COV2.S
Vaccine in the Prevention of COVID-19
Infections and Hospitalizations in the US
Before and During the Delta Variant Surge | JAMA network open | wrong outcome | |--------------------|--|-------------------------------|-------------------------| | Polinski et al. | Durability of the Single-Dose Ad26.COV2.S
Vaccine in the Prevention of COVID-19
Infections and Hospitalizations in the US before
and during the Delta Variant Surge | JAMA Network
Open | wrong study
duration | | Polinski et al. | Effectiveness of the Single-Dose Ad26.COV2.S COVID Vaccine | Preprint - medRxiv | wrong outcome | | Porru et al. | Post-Vaccination SARS-CoV-2 Infections among Health Workers at the University Hospital of Verona, Italy: A Retrospective Cohort Survey | Vaccines | wrong outcome | | Porru et al. | Post-Vaccination SARS-CoV-2 Infections among Health Workers at the University Hospital of Verona, Italy: A Retrospective Cohort Survey | Vaccines | wrong outcome | | Pouwels et al. | Impact of Delta on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK | Preprint - medRxiv | wrong intervention | | Pouwels et al. | Effect of Delta variant on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK | Nature medicine | duplicated | | Pozdnyakova et al. | Decreased Antibody Responses to
Ad26.COV2.S Relative to SARS-CoV-2 mRNA
Vaccines in Patients with Inflammatory Bowel
Disease | Gastroenterology | wrong outcome | | Pozzetto et al. | Immunogenicity and efficacy of heterologous ChadOx1/BNT162b2 vaccination | Preprint - Research
Square | wrong intervention | | Prabhu et al. | Antibody Response to Coronavirus Disease
2019 (COVID-19) Messenger RNA Vaccination
in Pregnant Women and Transplacental Passage
Into Cord Blood | Obstetrics and
Gynecology | wrong
intervention | | Pramod et al. | Effectiveness of Covishield vaccine in preventing Covid-19 - A test-negative case-control study | Vaccine | wrong study
duration | | Prasad et al. | COVID-19 Vaccination Associated with
Reduced Post-Operative SARS-CoV-2 Infection
and Morbidity | Annals of
Surgery | wrong
intervention | | Prasad et al. | Effectiveness of a COVID-19 Additional
Primary or Booster Vaccine Dose in Preventing
SARS-CoV-2 Infection Among Nursing Home
Residents During Widespread Circulation of the
Omicron Variant - United States, February 14-
March 27, 2022 | MMWR. Morbidity and mortality weekly report | wrong study
duration | |---------------------------|---|--|-------------------------| | Pratesi et al. | BNT162b2 mRNA SARS-CoV-2 vaccine elicits high avidity and neutralizing antibodies in healthcare workers | Vaccines | wrong outcome | | Pratò et al. | SARS-CoV-2 Transmission Risk to Household
and Family Contacts by Vaccinated Healthcare
Workers | Journal of Occupational and Environmental Medicine | wrong intervention | | Premikha et al. | Comparative Effectiveness of mRNA and
Inactivated Whole Virus Vaccines against
COVID-19 Infection and Severe Disease in
Singapore | Clinical infectious
diseases : an official
publication of the
Infectious Diseases
Society of America | wrong
comparator | | Prendecki et al. | Comparison of humoral and cellular responses in kidney transplant recipients receiving BNT162b2 and ChAdOx1 SARS-CoV-2 vaccines | Preprint - medRxiv | wrong outcome | | Prendecki et al. | Humoral and T-cell responses to SARS-CoV-2 vaccination in patients receiving immunosuppression | Annals of the
Rheumatic Diseases | wrong outcome | | Price et al. | BNT162b2 Protection against the Omicron
Variant in Children and Adolescents | New England
Journal of Medicine | wrong population, youth | | Prieto
Alhambra et al. | Comparative effectiveness and safety of homologous two-dose ChAdOx1 versus heterologous vaccination with ChAdOx1 and BNT162b2: a cohort analysis | Research Square | wrong
comparator | | Pritchard et al. | Impact of vaccination on new SARS-CoV-2 infections in the UK | Nature Medicine | wrong intervention | | Prunas et al. | Waning Effectiveness of the BNT162b2
Vaccine Against Infection in Adolescents | Preprint - medRxiv | wrong population | | Prunas et al. | Vaccination with BNT162b2 reduces transmission of SARS-CoV-2 to household contacts in Israel | Preprint - medRxiv | wrong study
design | | Puranik et al. | Comparative effectiveness of mRNA-1273 and BNT162b2 against symptomatic SARS-CoV-2 infection | Med (New York,
N.Y.) | wrong
comparator | |-----------------|---|-------------------------------------|---| | Puranik et al. | Comparison of Two Highly-Effective mRNA
Vaccines for COVID-19 During Periods of
Alpha and Delta Variant Prevalence | Preprint - medRxiv | duplicated | | Puranik, et al. | Comparison of two highly-effective mRNA vaccines for COVID-19 during periods of Alpha and Delta variant prevalence | Preprint - medRxiv | delayed exclusion - retrospective cohort study (matched unvaccinated and vaccinated individuals). The authors present Kaplan-Meier plots with VE data, but no extractable information (Figure 2 and Figure S2). Additional VE by month data presented in the Table 3 for Breakthrough infections, that comes from modelling (but no indication of the individual level follow-up time across the specified time period) | | Ramirez et al. | Correspondence on 'Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort' | Annals of the
Rheumatic Diseases | wrong outcome | | Ramirez et al. | SARS-CoV-2 Breakthrough Infections in Fully Vaccinated Individuals | Preprint - medRxiv | wrong outcome | | Ranzani et al. | Effectiveness of an Inactivated Covid-19
Vaccine with Homologous and Heterologous | | wrong outcome | | | Boosters against the Omicron (B.1.1.529)
Variant | | | |------------------------|---|--|-------------------------| | Ranzani et al. | Vaccine effectiveness of ChAdOx1 nCoV-19 against COVID-19 in a socially vulnerable community in Rio de Janeiro, Brazil: a test-negative design study | Clinical
Microbiology and
Infection | wrong study
duration | | Ranzani et al. | Vaccine effectiveness of ChAdOx1 nCoV-19 against COVID-19 in a socially vulnerable community in Rio de Janeiro, Brazil: a test-negative design study | Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases | wrong study
duration | | Rearte et al. | Effectiveness of rAd26-rAd5, ChAdOx1 nCoV-19, and BBIBP-CorV vaccines for risk of infection with SARS-CoV-2 and death due to COVID-19 in people older than 60 years in Argentina: a test-negative, case-control, and retrospective longitudinal study | Lancet (London,
England) | wrong outcome | | Redjoul et al. | Antibody response after second BNT162b2 dose in allogeneic HSCT recipients | The Lancet | wrong outcome | | Redmond et al. | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in vaccinated and unvaccinated healthcare personnel in a Veterans' Affairs healthcare system | Infection Control
and Hospital
Epidemiology | wrong
intervention | | Regev Yochay
et al. | 4th Dose COVID mRNA Vaccines,Äô
Immunogenicity & Efficacy Against Omicron
VOC | Preprint - medRxiv | wrong
comparator | | Regev-Yochay
et al. | 4th Dose COVID mRNA Vaccines'
Immunogenicity & Efficacy Against Omicron
VOC | Preprint - medRxiv | wrong
comparator | | Rennert et al. | Covid-19 vaccine effectiveness against general SARS-CoV-2 infection from the omicron variant: A retrospective cohort study | Preprint - medRxiv | duplicate | | Rennert et al. | Covid-19 vaccine effectiveness against general SARS-CoV-2 infection from the omicron variant: A retrospective cohort study | Preprint - medRxiv | wrong study
duration | | Rennert et al. | Effectiveness and protection duration of Covid-
19 vaccines and previous infection against any
SARS-CoV-2 infection in young adults | Nature
Communications | data in figures | | Revon-Riviere et al. | The BNT162b2 mRNA COVID-19 vaccine in adolescents and young adults with cancer: A monocentric experience | European Journal of
Cancer | wrong
intervention | |-------------------------------|--|--|-------------------------| | Revon-Riviere et al. | The BNT162b2 mRNA COVID-19 vaccine in adolescents and young adults with cancer: A monocentric experience | European Journal of
Cancer | wrong study
duration | | Reynolds et al. | COVID-19 vaccination breakthrough infections in a real-world setting: Using community reporters to evaluate vaccine effectiveness | Preprint - medRxiv | wrong study
design | | Risk et al. | Comparative Effectiveness of COVID-19
Vaccines against the Delta Variant | Clinical infectious
diseases: an official
publication of the
Infectious Diseases
Society of America | wrong
comparator | | Roberts et al. | Estimating COVID-19 Vaccination
Effectiveness Using Electronic Health Records
of an Academic Medical Center in Michigan | Preprint - medRxiv | wrong study
duration | | Roberts et al. | Estimating COVID-19 Vaccination
Effectiveness Using Electronic Health Records
of an Academic Medical Center in Michigan | Preprint - medRxiv | wrong
comparator | | Robilotti et al. | Clinical and Genomic Characterization of SARS
CoV-2 infections in mRNA Vaccinated Health
Care Personnel in New York City | Clinical infectious
diseases : an official
publication of the
Infectious Diseases
Society of America | wrong study
duration | | Rodríguez-
Espinosa et al. | Incidence of severe breakthrough SARS-CoV-2 infections in vaccinated kidney transplant and haemodialysis patients | Journal of nephrology | wrong
comparator | | Roest et al. | BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting | New England
Journal of Medicine | duplicated | | Rosenberg et al. | New COVID-19 Cases and Hospitalizations
Among Adults, | Hand search;
Morbidity and
Mortality Weekly
Report | wrong intervention | | Rosenberg et al. | COVID-19 Vaccine Effectiveness by Product and Timing in New York State | Preprint - medRxiv | wrong outcome | | Rosero-Bixby | Vaccine effectiveness of Pfizer-BioNTech and
Oxford-AstraZeneca to prevent severe COVID-
19 in Costa Rica by September and October | Europe PMC | wrong study
duration | | | 2021: A nationwide, observational study of hospitalisations
prevalence | | | |---------------------|--|-------------------------------------|---| | Rosero-Bixby | Vaccine effectiveness of Pfizer-BioNTech and Oxford-AstraZeneca to prevent severe COVID-19 in Costa Rica by September and October 2021: A nationwide, observational study of hospitalisations prevalence | Preprint - medRxiv | wrong study
duration | | Rosero-Bixby et al. | The Effectiveness of Pfizer-BioNTech and Oxford-AstraZeneca Vaccines to Prevent Severe COVID-19 in Costa Rica: Nationwide, Ecological Study of Hospitalization Prevalence | JMIR public health and surveillance | wrong study
duration | | Rovida, et al. | SARS-CoV-2 vaccine breakthrough infections are asymptomatic or mildly symptomatic and are infrequently transmitted | Preprint - medRxiv | delayed exclusion - not enough time of follow up (4 months criterion) | | Russo et al. | Boosters and time from the last anti-COVID-19 vaccine dose: lead public health choices by real-time epidemiological assessment | Epidemiologia e
prevenzione | wrong
comparator | | Russo et al. | SARS-COV-2 vaccination with BNT162B2 in renal transplant patients: Risk factors for impaired response and immunological implications | Clinical
Transplantation | wrong outcome | | Saban et al. | Changes in infectivity, severity and vaccine effectiveness against delta COVID-19 variant ten months into the vaccination program: The Israeli case | Preventive medicine | wrong intervention | | Sabnis et al. | Break-through COVID-19 infection rate with
Indian strain in Single-center Healthcare
Workers: A real world data | Preprint - medRxiv | wrong outcome | | Saciuk et al. | Pfizer-BioNTech vaccine effectiveness against
Sars-Cov-2 infection: Findings from a large
observational study in Israel | Preventive medicine | wrong study
duration | | Saciuk et al. | Pfizer-BioNTech Vaccine Effectiveness Against
SARS-CoV-2 Infection: Findings From a Large
Observational Study in Israel | Hand search;
Preprint - SSRN | duplicated | | Saciuk et al. | Pfizer-BioNTech Vaccine Effectiveness Against
SARS-CoV-2 Infection: Findings from a Large
Observational Study in Israel | Preprint - SSRN | wrong intervention | | Saciuk et al. | Effectiveness of a third dose of BNT162b2 mRNA vaccine | The Journal of infectious diseases | wrong
comparator | | Sacks | The single-dose J&J vaccine had 67% efficacy against moderate to severe-critical COVID-19 at >=14 d | Annals of Internal
Medicine | wrong publication type | |-----------------|--|---|--| | Sadoff et al. | Final Analysis of Efficacy and Safety of Single-
Dose Ad26.COV2.S | New England
Journal of Medicine | wrong outcome | | Sadoff et al. | Safety and Efficacy of Single-Dose
Ad26.COV2.S Vaccine against Covid-19 | The New England
Journal of Medicine | delayed exclusion - data is in graphs and not easily extractable at this point in time | | Sagiraju et al. | The effectiveness of SARS-CoV-2 vaccination in preventing severe illness and death—realworld data from a cohort of patients hospitalized with COVID-19 | Preprint - medRxiv | wrong intervention | | Salo et al. | The indirect effect of mRNA-based COVID-19 vaccination on healthcare workers' unvaccinated household members | Nature
Communications | wrong outcome | | Sansone et al. | Effectiveness of BNT162b2 vaccine against SARS-CoV-2 among healthcare workers | La Medicina del
Lavoro | wrong intervention | | Sarkar et al. | Seroprevalence and Dynamics of anti-SARS-CoV-2 antibody among healthcare workers following ChAdOx1 nCoV-19 vaccination | Preprint - medRxiv | wrong intervention | | Saul et al. | Reanalysis of the Pfizer mRNA BNT162b2
SARS-CoV-2 vaccine data fails to find any
increased efficacy following the boost:
Implications for vaccination policy and our
understanding of the mode of action | Preprint - medRxiv | wrong intervention | | Saure et al. | Dynamic IgG seropositivity after rollout of
CoronaVac and BNT162b2 COVID-19
vaccines in Chile: a sentinel surveillance study | The Lancet
Infectious Diseases | wrong outcome | | Scobie et al. | Monitoring incidence of covid-19 cases, hospitalizations, and deaths, by vaccination status,Äî13 US jurisdictions, April 4,ÄìJuly 17, 2021 | Morbidity and
Mortality Weekly
Report | wrong
comparator | | Selby et al. | Effect of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) mRNA vaccination in healthcare workers with high-risk coronavirus disease 2019 (COVID-19) exposure | Infection Control
and Hospital
Epidemiology | wrong
intervention | | Self et al. | Comparative Effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson & Samp; Johnson) Vaccines in Preventing COVID-19 Hospitalizations Among Adults Without Immunocompromising Conditions - United States, March-August 2021 | MMWR. Morbidity and mortality weekly report | wrong
comparator | |----------------|---|---|--| | Shah et al. | Effect of vaccination on transmission of COVID-19: an observational study in healthcare workers and their households | Preprint - medRxiv | wrong
intervention | | Shapiro et al. | Efficacy of booster doses in augmenting waning immune responses to COVID-19 vaccine in patients with cancer | Cancer cell | wrong
comparator | | Sharma et al. | Effectiveness of a third dose of BNT162b2 or mRNA-1273 vaccine for preventing post-vaccination COVID-19 infection: an observational study | Preprint - medRxiv | wrong outcome | | Sharma et al. | Effectiveness of mRNA-based vaccines during the emergence of SARS-CoV-2 Omicron variant | Clinical infectious
diseases: an official
publication of the
Infectious Diseases
Society of America | wrong study
duration; Data
reported in figures
only | | Sharma et al. | COVID-19 Vaccine Breakthrough Infections in
Veterans Health Administration | Preprint - medRxiv | wrong
comparator | | Sheikh et al. | Severity of omicron variant of concern and effectiveness of vaccine boosters against symptomatic disease in Scotland (EAVE II): a national cohort study with nested test-negative design | The Lancet
Infectious Diseases | already screened | | Sheikh et al. | BNT162b2 and ChAdOx1 nCoV-19 vaccine effectiveness against death from the delta variant | New England
Journal of Medicine | wrong study
duration | | Sheikh et al. | Severity of omicron variant of concern and effectiveness of vaccine boosters against symptomatic disease in Scotland (EAVE II): a national cohort study with nested test-negative design | The Lancet.
Infectious diseases | wrong outcome | | Sheikh et al. | SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness | The Lancet | wrong intervention | | Shen et al. | Efficacy of COVID-19 vaccines in patients taking immunosuppressants | Annals of the rheumatic diseases | wrong outcome | | Shinde et al. | Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant | Hand search; New
England Journal of
Medicine | wrong
intervention | |------------------|---|---|---| | Shrotri et al. | Duration of vaccine effectiveness against SARS-CoV2 infection, hospitalisation, and death in residents and staff of Long-Term Care Facilities (VIVALDI): a prospective cohort study, England, Dec 2020-Dec 2021 | Preprint - medRxiv | no usable data;
wrong study
duration | | Shostak et al. | Early humoral response among lung transplant recipients vaccinated with BNT162b2 vaccine | The Lancet
Respiratory
Medicine | wrong intervention | | Shrestha et al. | Coronavirus Disease 2019 (COVID-19) Vaccine
Boosting in Persons Already Protected by
Natural or Vaccine-Induced Immunity | Preprint - medRxiv | wrong
comparator | | Shrestha, et al. | Necessity of COVID-19 vaccination in previously infected individuals | Preprint - medRxiv | delayed exclusion – no useful data (authors presented only the number of individuals at risk among all the groups of interest) | | Shrotri et al. | Duration of vaccine effectiveness against SARS-CoV2 infection, hospitalisation, and death in residents and staff of Long-Term Care Facilities (VIVALDI): a prospective cohort study, England, Dec 2020-Dec 2021 | Preprint - medRxiv | wrong outcome | | Sibbel et al. | Real-World Effectiveness and Immunogenicity
of BNT162b2 and mRNA-1273 SARS-CoV-2
Vaccines in Patients on Hemodialysis | Journal of the
American Society of
Nephrology | wrong
intervention | | Sibbel et al. | Real-World Effectiveness and Immunogenicity
of BNT162b2 and mRNA-1273 SARS-CoV-2
Vaccines in Patients on Hemodialysis |
Journal of the
American Society of
Nephrology: JASN | wrong study
duration | | Silverman et al. | Vaccine Effectiveness during Outbreak of
COVID-19 Alpha (B.1.1.7) Variant in Men's
Correctional Facility, United States | Emerging Infectious
Diseases | wrong study
duration | | Silzle et al. | Effectiveness of the BNT162b2 mRNA COVID-19 vaccine in patients with multiple myeloma three and six months after vaccination | Swiss Medical
Weekly | wrong outcome | | Singer et al. | Effectiveness of BNT162b2 mRNA COVID-19 vaccine against SARS-CoV-2 variant Beta (B.1.351) among persons identified through contact tracing in Israel: A prospective cohort study | EClinicalMedicine | wrong study
duration | |------------------------|--|---|-------------------------| | Singer et al. | Effectiveness of BNT162b2 mRNA COVID-19
Vaccine Against SARS-CoV-2 Variant Beta
(B.1.351) Among Persons Identified Through
Contact Tracing in Israel | Preprint - SSRN | wrong intervention | | Singh et al. | Antibody Response after First-dose of
ChAdOx1-nCOV (Covishield) and BBV-152
(Covaxin) amongst Health Care Workers in
India: Preliminary Results of Cross-sectional
Coronavirus Vaccine-induced Antibody Titre
(COVAT) study | Preprint - medRxiv | wrong intervention | | Skowronski & de Serres | Safety and efficacy of the BNT162B2 mRNA covid-19 vaccine | New England
Journal of Medicine | wrong intervention | | Skowronski et
al. | Comparative single-dose mRNA and ChAdOx1 vaccine effectiveness against SARS-CoV-2, including variants of concern: test-negative design, British Columbia, Canada | The Journal of infectious diseases | wrong intervention | | Skowronski et
al. | Two-dose SARS-CoV-2 vaccine effectiveness with mixed schedules and extended dosing intervals: test-negative design studies from British Columbia and Quebec, Canada | Clinical infectious
diseases: an official
publication of the
Infectious Diseases
Society of America | Already included | | Smid et al. | Protection by vaccines and previous infection against the Omicron variant of SARS-CoV-2 | The Journal of infectious diseases | no usable data | | Smith et al. | Genomic and Virological Characterization of
SARS-CoV-2 Variants in a Subset of
Unvaccinated and Vaccinated U.S. Military
Personnel | Preprint - medRxiv | wrong population | | Sobieszczyk et al. | Asymptomatic Infection and Duration of Viral
Shedding in Symptomatic Breakthrough
Infections in a Phase 3 Study of AZD1222
(ChAdOx1 nCoV-19) | Open Forum
Infectious Diseases | conference
abstract | | Sookaromdee et al. | Effectiveness of mRNA Covid-19 vaccine in healthcare workers | Enfermedades
infecciosas y
microbiologia clinica
(English ed.) | foreign language | | Spensley et al. | Comparison of vaccine effectiveness against the Omicron (B.1.1.529) variant in patients receiving haemodialysis | Preprint - medRxiv | wrong outcome | |--------------------|--|----------------------------------|-------------------------| | Spensley et al. | Comparison of vaccine effectiveness against the Omicron (B.1.1.529) variant in patients receiving haemodialysis | Preprint - medRxiv | wrong study
duration | | Spitzer et al. | Association of a Third Dose of BNT162b2
Vaccine With Incidence of SARS-CoV-2
Infection Among Health Care Workers in Israel | JAMA | wrong
comparator | | Sritipsukho et al. | Comparing real-life effectiveness of various COVID-19 vaccine regimens during the delta variant-dominant pandemic: a test-negative case-control study | Emerging Microbes and Infections | wrong outcome | | Sritipsukho et al. | Comparing real-life effectiveness of various COVID-19 vaccine regimens during the delta variant-dominant pandemic: A test-negative case-control study | Emerging microbes & infections | wrong study
duration | | Sritipsukho et al. | Comparing real-life effectiveness of various COVID-19 vaccine regimens during the delta variant-dominant pandemic: A test-negative case-control study | Emerging microbes & infections | wrong study
duration | | Starrfelt et al. | Age and product dependent vaccine effectiveness against SARS-CoV-2 infection and hospitalisation among adults in Norway: A national cohort study, January - September 2021 | Preprint - medRxiv | wrong
comparator | | Starrfelt et al. | Age and product dependent vaccine effectiveness against SARS-CoV-2 infection and hospitalisation among adults in Norway: a national cohort study, January ,Äì September 2021 | Preprint - medRxiv | wrong outcome | | Starrfelt. et al. | Age and product dependent vaccine effectiveness against SARS-CoV-2 infection and hospitalisation among adults in Norway: a national cohort study, July - November 2021 | Preprint - medRxiv | Already included | | Starrfelt et al. | High vaccine effectiveness against COVID-19 infection and severe disease among residents and staff of long-term care facilities in Norway, November – June 2021 | Preprint - medRxiv | delayed exclusion – no useful data (no information about individual level follow up; authors presented only person time at risk) | |-------------------------|--|--|---| | Stirrup et al. | Clinical effectiveness of SARS-CoV-2 booster vaccine against Omicron infection in residents and staff of Long-Term Care Facilities: a prospective cohort study (VIVALDI) | Preprint - medRxiv | Excluded for RoB | | Stoliaroff Pepin et al. | Effectiveness of vaccines in preventing hospitalization due to COVID-19: A multicenter hospital-based case-control study, Germany, June 2021 to January 2022 | Preprint - medRxiv | wrong study
duration | | Stowe et al. | Effectiveness of COVID-19 vaccines against hospital admission with the Delta (B.1.617.2) variant | Hand search; Public
Health England pre-
prints | wrong intervention | | Suah et al. | Waning COVID-19 Vaccine Effectiveness for
BNT162b2 and CoronaVac in Malaysia: An
Observational Study | Preprint - medRxiv | wrong outcome | | Suah et al. | Waning COVID-19 Vaccine Effectiveness for
BNT162b2 and CoronaVac in Malaysia: An
Observational Study | Preprint - medRxiv | wrong outcome | | Suah et al. | Waning COVID-19 Vaccine Effectiveness for
BNT162b2 and CoronaVac in Malaysia: An
Observational Study | International
Journal of
Infectious Diseases | wrong outcome | | Suah et al. | PICK-ing Malaysia's Epidemic Apart:
Effectiveness of a Diverse COVID-19 Vaccine
Portfolio | Vaccines | wrong outcome | | Suah et al. | Real-world effectiveness of homologous and heterologous BNT162b2, CoronaVac, and AZD1222 booster vaccination against Delta and Omicron SARS-CoV-2 infection | Emerging microbes & infections | wrong intervention | | Sultan et al. | Distinct Vaccine Efficacy Rates Among Health
Care Workers During a COVID-19 Outbreak in
Jordan | Preprint - medRxiv | wrong outcome | | Sultan et al. | Distinct Vaccine Efficacy Rates Among Health
Care Workers During a COVID-19 Outbreak in
Jordan | Preprint - medRxiv | wrong outcome | | Sun et al. | COVID-19 BOOSTER VACCINE
EFFECTIVENESS in PEOPLE with and
WITHOUT IMMUNE DYSFUNCTION | Topics in Antiviral
Medicine | Conference report | |-----------------|---|--|-------------------------| | Svoboda et al. | Safety and Efficacy of Sars-Cov-2 Vaccines in
Hodgkin Lymphoma Patients Receiving PD-1
Inhibitors | Blood | wrong outcome | | Swift et al. | Effectiveness of mRNA COVID-19 vaccines against SARS-CoV-2 infection in a cohort of healthcare personnel | Clinical Infectious
Diseases | wrong
intervention | | Syed et al. | Effectiveness of COVID-19 vaccines | Journal of Infection | Already included | | Syed et al. | Effectiveness of COVID-19 vaccines | Journal of Infection | Already included | | Tahor et al. | Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals | Nature Medicine | duplicated | | Tai et al. | Booster protection against Omicron infection in a highly vaccinated cohort | Preprint - medRxiv | wrong study
duration | | Tande et al. | Impact of the COVID-19 Vaccine on
Asymptomatic Infection Among Patients
Undergoing Pre-Procedural COVID-19
Molecular Screening | Clinical Infectious
Diseases | wrong intervention | | Tande et al. | mRNA Vaccine Effectiveness Against
Asymptomatic SARS-CoV-2 Infection Over a
Seven-Month Period | Infection Control
and Hospital
Epidemiology | wrong study
design | | Tang et al. | Asymptomatic and Symptomatic SARS-CoV-2
Infections after BNT162b2 Vaccination in a
Routinely Screened Workforce | JAMA - Journal of
the American
Medical Association | wrong intervention | | Tang et al. | BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the Delta (B.1.617.2) variant in Qatar | Preprint - medRxiv | wrong study
design | | Tang et al. | BNT162b2 and mRNA-1273 COVID-19
vaccine effectiveness against the
SARS-CoV-2
Delta variant in Qatar | Nature Medicine | duplicated | | Tanislav et al. | Effect of SARS-CoV-2 vaccination among health care workers in a geriatric care unit after a B.1.1.7-variant outbreak | Public Health | wrong intervention | | Taquet et al. | Six-month sequelae of post-vaccination SARS-CoV-2 infection: a retrospective cohort study of 10,024 breakthrough infections | Preprint - medRxiv | wrong outcome | |-----------------|--|---|--| | Tartof et al. | Durability of BNT162b2 vaccine against hospital and emergency department admissions due to the omicron and delta variants in a large health system in the USA: a test-negative case-control study | The Lancet
Respiratory
Medicine | already screened | | Tartof et al. | Effectiveness of a third dose of BNT162b2 mRNA COVID-19 vaccine in a large US health system: A retrospective cohort study | SSRN | delayed exclusion
- duplicate of
Study ID 21-3 | | Tartof et al. | Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study | Lancet (London,
England) | duplicated | | Tartof et al. | Durability of BNT162b2 vaccine against hospital and emergency department admissions due to the omicron and delta variants in a large health system in the USA: a test-negative case-control study | The Lancet.
Respiratory
medicine | wrong study
duration | | Taubel et al. | Can a second booster dose be delayed in patients who have had COVID-19? | Preprint - medRxiv | wrong outcome | | Tene et al. | Assessment of effectiveness of 1 dose of BNT162B2 vaccine for SARS-CoV-2 infection 13 to 24 days after immunization | JAMA network open | wrong intervention | | Tene et al. | The effectiveness of the TWO-DOSE
BNT162b2 vaccine: analysis of real-world data | Clinical Infectious
Diseases | wrong intervention | | Tenforde et al | Effectiveness of SARS-CoV-2 mRNA Vaccines for Preventing Covid-19 Hospitalizations in the United States | Clinical Infectious
Diseases | wrong study
design | | Tenforde et al. | Effectiveness of a Third Dose of Pfizer-
BioNTech and Moderna Vaccines in Preventing
COVID-19 Hospitalization Among
Immunocompetent and Immunocompromised
Adults - United States, August-December 2021 | MMWR. Morbidity and mortality weekly report | wrong study
duration | | Tenforde et al. | Effectiveness of Pfizer-BioNTech and Moderna Vaccines Against COVID-19 Among Hospitalized Adults Aged >=65 Years - United States, January-March 2021 | Morbidity and
Mortality Weekly
Report | wrong intervention | | Tenforde et al. | Effectiveness of mRNA Vaccination in
Preventing COVID-19-Associated Invasive
Mechanical Ventilation and Death - United
States, March 2021-January 2022 | MMWR. Morbidity and mortality weekly report | wrong outcome | |----------------------|---|---|---| | Tenforde, et al. | Sustained Effectiveness of Pfizer-BioNTech
and Moderna Vaccines Against COVID-19
Associated Hospitalizations Among Adults -
United States, March-July 2021 | Morbidity and Mortality Weekly Report (MMWR) - CDC | delayed exclusion - case-control study, assessing vaccine effectiveness against hospitalization in a multistate network over 24 weeks. Vaccine effectiveness across diverse time points presented in Supplementary material (as figures, with no extractable information) | | Tenforde et al. | Effectiveness of Severe Acute Respiratory
Syndrome Coronavirus 2 Messenger RNA
Vaccines for Preventing Coronavirus Disease
2019 Hospitalizations in the United States | Clinical Infectious
Diseases | wrong study
duration | | Tenforde et al. | Protection of mRNA vaccines against hospitalized COVID-19 in adults over the first year following authorization in the United States | Clinical infectious
diseases: an official
publication of the
Infectious Diseases
Society of America | wrong study
duration | | Thangaraj et al. | Predominance of delta variant among the COVID-19 vaccinated and unvaccinated individuals, India, May 2021 | The Journal of
Infection | wrong outcome | | Thiruvengadam et al. | Effectiveness of ChAdOx1 nCoV-19 vaccine against SARS-CoV-2 infection during the delta (B.1.617.2) variant surge in India: a test-negative, case-control study and a mechanistic study of post-vaccination immune responses | The Lancet. Infectious diseases | wrong study
duration | | Thiruvengadam et al. | Cellular Immune Responses are Preserved and
May Contribute to Chadox1 ChAdOx1 nCoV-
19 Vaccine Effectiveness Against Infection Due | Preprint - SSRN | wrong intervention | | | to SARS-CoV-2 B.1.617.2 Delta Variant Despite
Reduced Virus Neutralisation | | | |-----------------|---|---|---| | Thomas et al. | Efficacy and safety of the BNT162b2 mRNA COVID-19 vaccine in participants with a history of cancer: subgroup analysis of a global phase 3 randomized clinical trial | Vaccine | wrong
comparator | | Thomas et al. | 1558O COVID-19 vaccine in participants (ptcpts) with cancer: Subgroup analysis of efficacy/safety from a global phase III randomized trial of the BNT162b2 (tozinameran) mRNA vaccine | Annals of Oncology | wrong outcome | | Thomas et al. | Safety and Efficacy of the BNT162b2 mRNA
Covid-19 Vaccine through 6 Months | The New England journal of medicine | duplicated | | Thomas, et al. | Safety and Efficacy of the BNT162b2 mRNA
Covid-19 Vaccine through 6 Months | The New England
Journal of Medicine | delayed exclusion - pre-print version of the article (the published version is included in the main document) | | Thompson et al. | Effectiveness of a Third Dose of mRNA
Vaccines Against COVID-19-Associated
Emergency Department and Urgent Care
Encounters and Hospitalizations Among Adults
During Periods of Delta and Omicron Variant
Predominance - VISION Network, 10 States,
August 2021-January 2022 | MMWR. Morbidity and mortality weekly report | wrong
comparator | | Thompson et al. | Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential and Frontline Workers - Eight U.S. Locations, December 2020-March 2021 | Morbidity and
Mortality Weekly
Report | wrong intervention | | Thompson et al. | Prevention and Attenuation of Covid-19 with
the BNT162b2 and mRNA-1273 Vaccines | New England
Journal of Medicine | wrong intervention | | Thompson et al. | Effectiveness of covid-19 vaccines in ambulatory and inpatient care settings | New England
Journal of Medicine | duplicated | | Toback et al. | Safety, Immunogenicity, and Efficacy of a COVID-19 Vaccine (NVX-CoV2373) Coadministered With Seasonal Influenza Vaccines | Preprint - medRxiv | wrong
intervention | |-------------------|--|--|--| | Toker et al. | Vaccination status among patients with the need for emergency hospitalizations related to COVID-19 | The American journal of emergency medicine | wrong
comparator | | Toniasso et al. | Reduction in COVID-19 prevalence in healthcare workers in a university hospital in southern Brazil after the start of vaccination | International Journal of Infectious Diseases: IJID | wrong intervention | | Tran et al. | Efficacy of COVID-19 vaccination on the symptoms of patients with long COVID: a target trial emulation using data from the ComPaRe e-cohort in France | SSRN | wrong outcome | | Trapani et al. | COVID-19 vaccines in patients with cancer | The Lancet
Oncology | wrong publication type | | Tré-Hardy et al. | Waning antibodies in SARS-CoV-2 naïve vaccines: Results of a three-month interim analysis of ongoing immunogenicity and efficacy surveillance of the mRNA-1273 vaccine in healthcare workers | The Journal of
Infection | wrong intervention | | Tré-Hardy, et al. | Six-month interim analysis of ongoing immunogenicity surveillance of the mRNA-1273 vaccine in healthcare workers: A third dose is expected | Journal of Infection | delayed exclusion - data mainly focusing on immunogenicity findings. | | Tsapepas et al. | Clinically Significant COVID-19 Following
SARS-CoV-2 Vaccination in Kidney Transplant
Recipients | American Journal of
Kidney Diseases | wrong outcome | | Tseng et al. | Effectiveness of
mRNA-1273 against SARS-CoV-2 omicron and delta variants | Preprint - medRxiv | wrong
comparator | | Tseng et al. | Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants | Nature medicine | wrong
comparator | | Tseng et al. | Effectiveness of mRNA-1273 against SARS-CoV-2 omicron and delta variants | Nature medicine | delayed exclusion - baseline is 14-90 days, which is beyond our 30.5 days average post- receipt of second dose threshold | | Tseng et al. | Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants | Nature Medicine | wrong
comparator | |------------------|--|---|----------------------------------| | Tsiatis et al. | Estimating vaccine efficacy over time after a randomized study is unblinded | Biometrics | wrong study
design | | Tsundue et al. | First and second doses of Covishield vaccine provided high level of protection against SARS-CoV-2 infection in highly transmissible settings: results from a prospective cohort of participants residing in congregate facilities in India | BMJ global health | wrong study
design | | Tucker et al. | Evaluating clinical effectiveness of SARS-CoV-2 vaccine in solid organ transplant recipients: A propensity score matched analysis | Transplant infectious disease: an official journal of the Transplantation Society | no VE data,
wrong time points | | Tyagi et al. | Breakthrough COVID19 infections after vaccinations in healthcare and other workers in a chronic care medical facility in New Delhi, India | Diabetes &
Metabolic
Syndrome | wrong outcome | | Uschner et al. | Breakthrough SARS-CoV-2 Infections after
Vaccination in North Carolina | Preprint - medRxiv | wrong outcome | | Uzun et al. | COVID-19: vaccination vs. hospitalization | Infection | wrong outcome | | Vahidy et al. | Real-world Effectiveness of COVID-19 mRNA
Vaccines against Hospitalizations and Deaths in
a Retrospective Cohort | Open Forum
Infectious Diseases | conference
abstract | | Vahidy et al. | Real World Effectiveness of COVID-19 mRNA
Vaccines against Hospitalizations and Deaths in
the United States | Preprint - medRxiv | article withdrawn | | Vaishya et al. | SARS-CoV-2 infection after COVID-19 immunization in healthcare workers: A retrospective, pilot study | The Indian Journal of Medical Research | NO PDF | | Vasileiou et al. | Interim findings from first-dose mass COVID-
19 vaccination roll-out and COVID-19 hospital
admissions in Scotland: a national prospective
cohort study | The Lancet | wrong intervention | | Vasileiou et al. | Effectiveness of First Dose of COVID-19
Vaccines Against Hospital Admissions in
Scotland: National Prospective Cohort Study of
5.4 Million People | Hand search;
Preprint - SSRN | wrong intervention | | Veerapu et al. | COVID-19 vaccines effectiveness against
SARS-CO-V-2 infection among persons
attending RT-PCR centre at a Medical College
Hospital in Telangana: A case control study | Preprint - medRxiv | already screened | |-------------------------|--|--|-------------------------------------| | Veerapu et al. | COVID-19 vaccines effectiveness against
SARS-CO-V-2 infection among persons
attending RT-PCR centre at a Medical College
Hospital in Telangana: A case control study | Preprint - medRxiv | Wrong
comparator | | Vergnes | Safety and Efficacy of the BNT162b2 mRNA
Covid-19 Vaccine | The New England
Journal of Medicine | wrong intervention | | Victor et al. | Protective Effect of COVID-19 Vaccine
Among Health Care Workers During the
Second Wave of the Pandemic in India | Mayo Clinic proceedings | wrong intervention | | Victora et al. | Estimating the early impact of vaccination against COVID-19 on deaths among elderly people in Brazil: Analyses of routinely-collected data on vaccine coverage and mortality | EClinicalMedicine | wrong study
design | | Vijayasingham
et al. | Sex-disaggregated data in COVID-19 vaccine trials | The Lancet | wrong study
design | | Villela et al. | Effectiveness of Mass Vaccination in Brazil against Severe COVID-19 Cases | Preprint - medRxiv | wrong outcome | | Vitek et al. | Vaccine effectiveness against severe acute
respiratory infections (SARI) COVID-19
hospitalisations estimated from real-world
surveillance data, Slovenia, October 2021 | Eurosurveillance | wrong
comparator | | Vivaldi et al. | Risk factors for SARS-CoV-2 infection after primary vaccination with ChAdOx1 nCoV-19 or BNT1262b2 and after booster vaccination with BNT1262b2 or mRNA-1273: a population-based cohort study (COVIDENCE UK) | Preprint - medRxiv | wrong outcome | | Vivaldi et al. | Correlation between post-vaccination titres of combined IgG, IgA, and IgM anti-Spike antibodies and protection against breakthrough SARS-CoV-2 infection: a population-based longitudinal study (COVIDENCE UK) | Preprint - medRxiv | wrong
comparator | | Voko et al. | Effectiveness and waning of protection with different SARS-CoV-2 primary and booster vaccines during the Delta pandemic wave in 2021 in Hungary (HUN-VE 3 study) | Preprint - medRxiv | no useful data,
baseline is long | | Vokó et al. | Nationwide effectiveness of five SARS-CoV-2 vaccines in Hungary-the HUN-VE study | Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases | wrong study
duration | |------------------|---|--|--| | Voysey et al. | Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK | The Lancet | wrong intervention | | Voysey et al. | Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials | The Lancet | wrong intervention | | Wadei et al. | COVID-19 infection in solid organ transplant recipients after SARS-CoV-2 vaccination | American Journal of
Transplantation | wrong intervention | | Wagner et al. | COVID-19 vaccine: mRNA-1273 is effective and safe | Pneumologie | foreign language | | Waldhorn et al. | Six-Month Efficacy and Toxicity Profile of
BNT162b2 Vaccine in Cancer Patients with
Solid Tumors | Cancer discovery | wrong
comparator | | Waldhorn, et al. | Six Month Efficacy and Toxicity Profile of
BNT162b2 Vaccine in Cancer Patients with
Solid Tumors | Cancer Discovery | delayed exclusion - data mainly focusing on immunogenicity findings. Also, study included only vaccinated individuals (no unvaccinated controls) | | Wang et al. | Safety and Efficacy of the BNT162b2 mRNA
Covid-19 Vaccine | The New England
Journal of Medicine | wrong intervention | | Wang et al. | The impacts of COVID-19 vaccine timing, number of doses, and risk prioritization on mortality in the US | Preprint - medRxiv | wrong study
design | | Wang et al. | Increased risk for COVID-19 breakthrough infection in fully vaccinated patients with substance use disorders in the United States between December 2020 and August 2021 | World Psychiatry | wrong
comparator | |--------------------|--|---|----------------------------------| | Wang et al. | Impact of Vaccination, Prior Infection, and
Therapy on Delta and Omicron Variants | Preprint - medRxiv | wrong
comparator | | Waxman et al. | Comparison of Natural and BNT162b2
Vaccine-induced Immunity, with and without an
Enhancer or Booster Dose, on the Risk of
COVID-19-Related Hospitalization in Israel | Research Square | wrong study
duration | | Waxman et al. | Comparing COVID-19-related hospitalization rates among individuals with infection-induced and vaccine-induced immunity in Israel | Nature communications | wrong outcome;
wrong duration | | Westholter & Taube | SARS-CoV-2 outbreak in a long-term care facility after vaccination with BNT162b2 | Clinical Infectious
Diseases | wrong intervention | | Whitaker et al. | Pfizer-BioNTech and Oxford AstraZeneca
COVID-19 vaccine effectiveness and immune
response among individuals in clinical risk
groups | The Journal of infection | wrong study
duration | | Whitaker et al. | Pfizer-BioNTech and Oxford AstraZeneca
COVID-19 vaccine effectiveness and immune
response among individuals in clinical risk
groups | Hand search -
Public Health
England preprints | wrong intervention | | White et al. | Incident SARS-CoV-2 Infection among mRNA-
Vaccinated and Unvaccinated Nursing Home
Residents | The New England
Journal of Medicine | wrong intervention | | Wickert et al. | Estimates of Single Dose and Full Dose
BNT162b2
Vaccine Effectiveness among USAF
Academy cadets, 1 Mar - 1 May 2021 | Preprint - medRxiv | wrong intervention | | Widdifield et al. | Vaccine effectiveness against SARS-CoV-2 infection and severe outcomes among individuals with immune-mediated inflammatory diseases tested between March 1 and Nov 22, 2021, in Ontario, Canada: a population-based analysis | The Lancet.
Rheumatology | wrong study
duration | | Williams et al. | Measuring vaccine efficacy against infection and disease in clinical trials: sources and magnitude of bias in COVID-19 vaccine efficacy estimates | Preprint - medRxiv | wrong
intervention | | Williams et al. | COVID-19 Outbreak Associated with a SARS-CoV-2 P.1 Lineage in a Long-Term Care Home after Implementation of a Vaccination Program – Ontario, April-May 2021 | Hand search;
Clinical Infectious
Diseases | wrong intervention | |------------------|---|---|------------------------| | Winkelman et al. | Trends in COVID-19 Vaccine Administration and Effectiveness Through October 2021 | JAMA network
open | wrong outcome | | Wise et al. | Covid-19: New data on Oxford AstraZeneca vaccine backs 12 week dosing interval | BMJ (Clinical
Research Ed.) | wrong publication type | | Wise et al. | Covid-19: People who have had infection might only need one dose of mRNA vaccine | BMJ (Clinical
Research Ed.) | wrong publication type | | Wise et al. | Covid-19: People who have had infection might only need one dose of mRNA vaccine | BMJ (Clinical
Research Ed.) | duplicated | | Wise et al. | Covid-19: Pfizer BioNTech vaccine reduced cases by 94% in Israel, shows peer reviewed study | BMJ (Clinical
Research Ed.) | wrong publication type | | Wright et al. | Comparative vaccine effectiveness against severe COVID-19 over time in US hospital administrative data: a case-control study | The Lancet
Respiratory
Medicine | data in figures | | Wright et al. | Comparative vaccine effectiveness against severe COVID-19 over time in US hospital administrative data: a case-control study | The Lancet.
Respiratory
medicine | wrong
comparator | | Wu et al. | 1562MO Effectiveness of COVID-19
vaccination in cancer patients: A nationwide
Veterans Affairs study | Annals of Oncology | wrong outcome | | Xie et al. | Comparative effectiveness of the BNT162b2 vs
ChAdOx1 vaccine against Covid-19 | Preprint - medRxiv | wrong
comparator | | Xie et al. | Comparative effectiveness of the BNT162b2 and ChAdOx1 vaccines against Covid-19 in people over 50 | Nature
Communications | wrong outcome | | Xiong et al. | Age and Gender Disparities in Adverse Events
Following COVID-19 Vaccination: Real-World
Evidence Based on Big Data for Risk
Management | Frontiers in
Medicine | wrong intervention | | Yadav et al. | The high mortality and impact of vaccination on COVID-19 in hemodialysis population in India during the second wave | Kidney
International
Reports | wrong intervention | | Yan et al. | Rate and risk factors for breakthrough SARS-CoV-2 infection after vaccination | Journal of Infection | wrong intervention | |-----------------|--|------------------------------------|---| | Yassi et al. | Infection control, occupational and public health measures including mRNA-based vaccination against SARS-CoV-2 infections to protect healthcare workers from variants of concern: a 14-month observational study using surveillance data | Preprint - medRxiv | wrong intervention | | Yelin et al. | Associations of the BNT162b2 COVID-19 vaccine effectiveness with patient age and comorbidities | Preprint - medRxiv | wrong intervention | | Yi et al. | Impact of national Covid-19 vaccination
Campaign, South Korea | Vaccine | wrong outcome;
wrong study
duration | | Young-Xu et al. | Estimated Effectiveness of COVID-19
Messenger RNA Vaccination Against SARS-
CoV-2 Infection Among Older Male Veterans
Health Administration Enrollees, January to
September 2021 | JAMA Netw Open. | Excluded for RoB | | Young-Xu et al. | Effectiveness of mRNA COVID-19 Vaccines against Omicron among Veterans | Preprint - medRxiv | wrong study
duration | | Young Xu et al. | Effectiveness of mRNA COVID-19 Booster
Vaccines against Omicron and Delta Variants
among US Veterans | Preprint - medRxiv | wrong study
duration | | Young-Xu et al. | Effectiveness of mRNA COVID-19 Booster
Vaccines against Omicron and Delta Variants
among US Veterans | Preprint - medRxiv | wrong study
duration | | Young Xu et al. | Coverage and Effectiveness of mRNA COVID-
19 Vaccines among Veterans | Preprint - medRxiv | wrong intervention | | Young-Xu et al. | Coverage and Estimated Effectiveness of
mRNA COVID-19 Vaccines Among US
Veterans | JAMA network open | wrong study
duration | | Yu Chen et al. | POS-977 RISK OF COVID-19 INFECTION
POST VACCINATION PROGRAMME IN
PATIENTS WITH END STAGE KIDNEY
DISEASE IN PENANG STATE | Kidney
International
Reports | Full-text not found | | Zacay et al. | BNT162b2 Vaccine Effectiveness in Preventing
Asymptomatic Infection With SARS-CoV-2
Virus: A Nationwide Historical Cohort Study | Open Forum
Infectious Diseases | wrong intervention | | Zambrano et al. | Effectiveness of BNT162b2 (Pfizer-BioNTech)
mRNA Vaccination Against Multisystem
Inflammatory Syndrome in Children Among
Persons Aged 12-18 Years - United States, July-
December 2021 | MMWR. Morbidity and mortality weekly report | wrong outcome | |-----------------|--|--|---------------------| | Zaqout et al. | The initial impact of a national BNT162b2 mRNA COVID-19 vaccine rollout | International Journal of Infectious Diseases: IJID | wrong intervention | | Zheutlin et al. | Durability of Protection against COVID-19
Breakthrough Infections and Severe Disease by
Vaccines in the United States | Preprint - medRxiv | wrong
comparator | | Zheutlin et al. | Durability of Protection against COVID-19
Breakthrough Infections and Severe Disease by
Vaccines in the United States | Preprint - medRxiv | wrong
comparator |