Supplementary Table 1. Summary of studies from May 11th to July 14th 2021 (n=29)

Author,	Date of publicat-	Date of data		Study	Coun-		Sample	Outcome			
date	ion	collection	Source	design	try	Setting	size	measures	Objective	VOC	Main Findings
Adamoski 2021 ¹	21-Jun-21	Oct 10 th 2020 to May 24 th 2021	medRxiv	Cross- sectional	BRA	Univers- ity	7249 people; 12558 tests	Positive sample Genotype	Provide safer work environment for employees of the Federal University of Paraná in Brazil	Gam- ma	Analysis of saliva presents a cheap, easy to collect, & feasible asymptomatic screening strategy.
Adeyinka 2021 ²	05-Jul-21	Jan 3 rd to Feb 6 th 2020 & Jan 1 st to Jun 15 th 2021	medRxiv	Preval- ence Study	CAD	Comm- unity	NR	Prev-alence of VOC, vaccination data & public health measures	Examine clustering patterns of COVID-19 public health efforts & cluster differences in prev-alence of VOC in Canada	Alpha, Beta, Gam- ma & Delta	Public health measures varied greatly across provinces, indicating the importance for increasing the number of fully vaccinated individuals
Aubrey 2021 ³	21-Jun-21	July 15 th 2020 to Feb 15 th 2021	medRxiv	Surveil- lance Testing	PYF	Comm- unity	59,490 individual self- collected samples	Number of positive SARS-CoV-2 cases	Reduce the importation of SARS COV-2 into French Polynesia through travel	Alpha	Self-collection & pooling proved to be a low resource-intensive approach to testing, while still effectively detecting VOC
Berec 2021 ⁴	05-Jul-21	Aug 31 st 2020 to Jun 30 th 2021	medRxiv	Modell- ing	CZE	Comm- unity	N/A	COVID-19 related deaths	Determine whether delaying the 2 nd vaccine dose from 21 to 42 days is advantageous	Alpha	A 2 nd dose at 21 days is advantageous when vaccine supply is sufficient & epidemic is mild, while a 2 nd dose at 42 days is advantageous when vaccine supply is insufficient & epidemic is severe
Betti 2021 ⁵	03-Jun-21	Dec 12 th 2020 to May 7 th 2021	Vaccine s	Modell- ing	CAD	Comm- unity	N/A	Number of positive SARS-CoV-2 cases	Predict when new variants overtake the wildtype during an outbreak	Alpha	Due to current underreporting of COVID-19 cases, it is estimated that a VOC wouldn't become dominant until March/April 2021. Therefore, NPIs should be maintained in ON along with vaccination to prevent further outbreaks.
Borch- ering 2021 ⁶	14-May- 21	Mar 27 th 2021	CDC MMWR	Modell- ing	USA	Comm- unity	n/a	Weekly reported cases,	Provide COVID-19 projections in the US over 6 months	Alpha	High vaccination coverage & moderate NPI adherence would allow hospitalizations & deaths to remain

Author.	Date of	Date of data		Study	Coun-		Sample	Outcome			
date	ion	collection	Source	design	try	Setting	size	measures	Objective	voc	Main Findings
								hospitalizati ons & deaths			low, with a projected decline in cases by July 2021. Lower NPI adherence would lead to increases in severe COVID-19 outcomes, even with enhanced vaccination coverage.
Bowie 2021 ⁷	10-lun-21	lun 1 st 2021	medRxiv	Modell-	UK	Comm- unity	n/a	Incidence, death rate & reproductiv e ratio	Determine whether an effective find, test, trace, isolate & support (FTTIS) system would be helpful in the UK with low case numbers, moderate immunization levels & a circulating VOC	Delta	An improved FTTIS system could help prevent a 3 rd wave caused by VOC
Braun 2021 ⁸	15-Jun-21	Jan to Mar 2021	Internat ional Journal of Clinical Pharma cology & Therape utics	Modell- ing	DEU	Comm- unity	n/a	Daily number of newly infectious persons, total number of infected persons & occupancy of ICU	Model the epidemiological effect of vaccination in relation to the presence of Alpha in Germany	Alpha	Daily number of new infections, total number of infections & ICU occupancy is directly related to the speed of vaccine rollout amongst the population
Chen 2021 ⁹	15-Jun-21	Nov 1 st 2020 to Jan 20 th 2021	SSRN	Observ- ational	UK	Comm- unity	41,341 type 1 groups comprisin g 160,600 backward events available for analysis	SGTF prev- alence (proxy for Alpha)	Estimate COVID-19 transmission risk, including Alpha, across comm-unity settings in Engl&	Alpha	Highest risk of transmission associated with personal services (e.g. hairdressers), visiting friends/relatives & daycare/educational settings. Transmission risk depends on environmental factors with higher risk in certain settings likely associated with single source transmission or indoor environments.
Conn 2021 ¹⁰	22-May- 21	3 data-sets: Jun 12 th to Nov 13 th 2020; Nov 14 th 2020 to Mar 24 th	medRxiv	Modell- ing	ик	Comm- unity	N/A	Reproductio n number, daily infections & daily deaths	Estimate reproduction numbers & transmission rate of Alpha to assess the UK's re-opening plan	Alpha	Number of daily cases are predicted to increase as NPIs are lifted in May & Jun 2021. A further significant increase in cases is predicted with a reduced uptake of vaccination by eligible individuals.

Author,	Date of publicat-	Date of data		Study	Coun-		Sample	Outcome			
date	ion	collection	Source	design	try	Setting	size	measures	Objective	VOC	Main Findings
		2021; & Mar 2020 to May 12 th 2021							in relation to vaccine rollout		
Di Domenico 2021 ¹¹	16-May- 21	Mar 2020 to Apr 2021	medRxiv	Modell- ing	FRA	Comm- unity	N/A	Number of cases of SARS-CoV-2	Compare various intervention scenarios to examine adherence to & sustainability of epidemic control	Alpha	An estimated increase in cases predicted for May & Jun 2021 as NPIs are lifted. Moderate NPIs should be in place for extended time to achieve similar reults as high intensity lockdowns. Short & strict lockdowns perform better than longer moderate lockdowns due to waning adherence of lockdown measures.
Dimeglio 2021 ¹²	12-May- 21	Feb 5 th to 12 th 2021 & Mar 5 th to 12 th 2021	Viruses	Modell-	FRA	Comm- unity	N/A	Number of new daily SARS-CoV-2 cases	Estimate transmission dynamics of SARS- CoV-2 in Toulouse, France in the presence of VOC & in relation to public health measures, including vaccination rollout.	Alpha	Alpha became dominant in Feb 2021, which indicates its capacity to adapt to new hosts. Its transmission dynamics suggest that the public health measures are effective against Alpha in contrast to some reports
Du 2021 ¹³	01-Jul-21	NA	SSRN Lancet	Modell- ing	USA	Comm- unity	N/A	Testing strategies & number of positive SARS-CoV-2 cases	Assess the economic impact of proactive testing strategies versus different transmission scenarios of SARS- CoV-2	Alpha, Beta, Gam- ma & Delta	Modell-ing suggests daily testing is needed for confirmed cases when population immunity is low & weekly testing when immunity is high. As transmission rate increases in the population, testing becomes more economical.
Jaya- sundara 2021 ¹⁴	07-Jul-21	N/A	medRxiv	Modell- ing	MYS	Comm- unity	N/A	Number of SARS-CoV-2 cases	Predict the impact of vaccine rollout on controlling the spread of SARS-CoV-2 in relation to various public health response scenarios in Malaysia	Alpha, Beta & Delta	Under current vaccination rollout, lifting all NPIs would lead to a surge in cases. VOC are estimated to be responsible for the current resurgence in case numbers & therefore, rapid vaccine rollout is necessary to mitigate the spread of SARS-CoV-2, along with continuation of NPIs
Lane 2021 ¹⁵	09-Jul-21	Jan 25 th 2020 to Jan 31 st 2021	Lancet Public Health	Prev- alence study	AUS	Comm- unity	20 451 cases of COVID-19	Genomic analyses & associated case clusters	Explore the role of genomic epidemiology in mitigating COVID-19 outbreaks in Australia	Alpha	Swift & comprehensive quarantine & public health measures are effective at mitigating COVID-19 outbreaks, even with high viral growth rates. Real-time genomic analysis

Author, date	Date of publicat- ion	Date of data collection	Source	Study design	Coun- trv	Setting	Sample size	Outcome measures	Obiective	voc	Main Findings
				Ŭ							surveillance is a useful public health tool
Li 2021 ¹⁶	27-Jun-21	Mar 1 st 2020 to May 31 st 2021 & Dec 13 th 2020 to May 31 st 2021	medRxiv	Modell- ing	USA	Comm- unity	N/A	Number of wildtype & Alpha cases	Estimate the transmission dynamics of wildtype & VOC SARS-CoV-2 in relation to vaccine coverage in the US	Alpha	Current vaccines are effective against the alpha variant, & 70% coverage would be sufficient protection, to allow for social activities to resume
Loenen- bach 2021 ¹⁷	2027-05- 21	Jan to Feb 2021	Euro- surveilla nce	Prev- alence study	DEU	Child- care centres	3 outbreaks	Secondary attack rate	Investigate childcare center outbreaks & assess secondary attack rate within centers & associated households	Alpha	Evidence supports a higher transmissibility rate of alpha variant, & there are indications that it affects children at a higher rate. This highlights the need for NPIs
Maison 2021 ¹⁸	09-Jun-21	Apr 2 nd 2021	Researc h Square	Prev- alence study	USA	Comm- unity	Alpha & Beta	Prev-alence & origin of VOC in Hawai'i	Demonstrate a method to defining COVID-19 variants' lineages	Alpha, Beta, Gam- ma	Quarantine prevented VOC from entering Hawai'i. There would be benefit from a collective quarantine across various states rather than individual state quarantines
Mancuso 2021 ¹⁹	13-Jul-21	Jan 22 nd , 2020 to Mar 6 th , 2021	medRxiv	Modell-	USA	Comm- unity	N/A	Vaccine effective- ness	Assess the impact of vaccination & vaccine-induced cross-protection against COVID-19 & the alpha variant	Alpha	Wide-scale vaccination & vaccine- induced cross protection is imperative to slowing the spread of COVID-19
Moghada s 2021 ²⁰	08-Jul-21	Dec 12 th 2020 to Jun 28 th 2021	medRxiv	Modell-	USA	Comm- unity	N/A	Case data in areas with different vaccination progress	Quantify impact of vaccination on cases	Alpha, Gam- ma & Delta	Vaccination program is highly effective in preventing COVID-19 cases. The speed of vaccination can have a very large impact on outbreak prevention, & increasing vaccination rates in areas which are underserved should be a priority
Neu- berger 2021 ²¹	03-Jul-21	Aug 31 st 2020 to May 31 st 2021 & Ongoing	medRxiv	Cross- sectional study	DEU	Day care centres	8,500 ECEC managers	Reported	Define risk determinants & underst& difference in risk between children & adults	Alpha	Centers with children with lower socioeconomic status have a higher risk of infection, strict contact restrictions have shown to prevent infection

Author.	Date of publicat-	Date of data		Study	Coun-		Sample	Outcome			
date	ion	collection	Source	design	try	Setting	size	measures	Objective	voc	Main Findings
Nielson 2021 ²²	06-Jul-21	NR	medRxiv	Modell- ing	N/A	Comm- unity	N/A	Overdispersi on & mean infectiousne ss of variants	Determine how overdispersion will affect the variant	Alpha	Overdispersion is evolutionarily unstable, & variants could become dominant
Quilty 2021 ²³	14-Jun-21	NR	medRxiv	Modell- ing	Global	Comm- unity	N/A	Proportion of infected travelers	Assess the effectiveness of quarantine & testing strategies for travelers	Alpha	Quarantine & strategic testing are effective methods in preventing transmission due to traveling
Quinonez 2021 ²⁴	17-May- 21	Dec 2019 to Apr 2021	Viruses	Modell- ing	NA	Comm- unity	N/A	Estimates of VOC infection	Forecast the variant behaviour due to selective pressure	Alpha, Beta, Gam- ma & Delta	B.1.351, B.1.617, & P.1 variants have shown to escape vaccine induced immunity, indicating the potential need for a third dose of vaccination
Sachak- Patwa 2021 ²⁵	02-Jun-21	Mar 12 th to Apr 11 th 2021 & Mar 22 nd to April 21 st 2021	Researc h Square	Modell- ing	IMN & ISR	Comm- unity	N/A	Viral transmissio n	Assess the risk of virus outbreak upon the removal of NPIs & travel restrictions	Alpha	Upon lifting travel restrictions, surveillance of incoming passengers will be crucial to preventing outbreaks
Sanz-Leon 2021 ²⁶	08-Jul-21	Mar to May 2020 & Feb to Mar 2021	medRxiv	Modell- ing	AUS	Comm- unity	N/A	Estimated transmissio n of COVID- 19	Assess the risk of continued transmission with the presence more transmissible variants	Alpha	A small group of people infected with variants with increased transmissibility could result in larger & longer comm- unity transmission outbreaks
Turner 2021 ²⁷	Jun-2021	Jan 2020 to May 2021	CESifo Working Papers	Modell- ing	OECD count- ries	Comm- unity	N/A	Reproductio n number	Analyze the impact of a set of policies, & the importance of vaccination in relation to variants	Alpha, Beta, Gam- ma, Delta	Increased vaccination rates would provide economic relief due to fewer containment policies & lower infection rates
Yang 2021 28	25-Jun-21	Mar 2020 to May 2021	medRxiv	Modell- ing	IND	Comm- unity	N/A	Number of infections, reported cases, & reported deaths	Underst& the epidemiological characteristics & impact of the Delta variant	Delta	Case decline was most likely due to NPIs & weather conditions which negatively impacted SARS-CoV-2 transmission, rather than high population immunity
Zou 2021 ²⁹	07-Jul-21	Jan 25 th 2020 to Mar 12 th 2021	medRxiv	Modell- ing	AUS	Comm- unity	N/A	Effective reproductio n number	Create a model to inform decision makers on suitable	Alpha, Delta	The number of cases which were reported on the day of public health

Author, date	Date of publicat- ion	Date of data collection	Source	Study design	Coun- try	Setting	Sample size	Outcome measures	Objective	voc	Main Findings
									timing for public health measure implementation		measure implementation predicted the size of case outbreaks

AUS: Australia; CAD: Canada; CDC: centres for disease control & prevention; CZE: Czech Republic; DEU: Germany; FRA: France; IND: India; ISR: Israel; IMN: Isle of Man; MMWR: morbidity & mortality weekly report; MYS: Malaysia; NA: North America; N/A: Not available; NPI: non-pharmaceutical intervention; PYF: French Polynesia; USA: United States of America; UK: United Kingdom; VOC: variant/s of concern

Supplementary Table 2. Critical appraisal results of included studies

Author, Year	Source	Preprint or Peer	Adjusted score for PP	Total Score (%)	Overall Quality
		Review			
Cohort Studies Appraised with NOS Tool	a				
Buchan, 2021 ³⁰	MedRxiv	РР	-2	6 (67)	Medium
Chudasama, 2021 ³¹	Journal of Infection	PR	N/A	8 (89)	High
Cross-sectional Studies Appraised with N	IOS Tool ^b				
Victora, 2021 ³²	MedRxiv	РР	-2	6 (60)	Medium
Cross-sectional Studies Appraised with J	BI Tool ^c				
Neuberger 2021 ²¹	MedRxiv	РР	-2	3 (37.5)	Medium
Prev-alence Studies Appraised with JBI T	oold				
Lane, 2021 ¹⁵	Lancet Public Health	PR	N/A	9 (100)	High
Loenenbach, 2021 ¹⁷	Eurosurveillance	PR	N/A	9 (100)	High

^{a,d}Total scores calculated out of 9; ^bTotal score calculated out of 10; ^cTotal score calculated out of 8

Search Strategies

All searches last executed on July 14, 2021.

MEDLINE (Ovid MEDLINE All)

COVID-19 search filter: CADTH <u>https://covid.cadth.ca/literature-searching-tools/cadth-covid-19-search-strings/</u>

1	(coronavirus/ or betacoronavirus/ or coronavirus infections/) & (disease outbreaks/ or epidemics/ or p&emics/)
2	(ncov* or 2019ncov or 19ncov or covid19* or covid or sars-cov-2 or sarscov-2 or sarscov2 or severe acute respiratory syndrome coronavirus 2 or severe
	acute respiratory syndrome corona virus 2).ti,ab,kf,nm,ot,ox,rx,px.

3	((new or novel or "19" or "2019" or wuhan or hubei or china or chinese) adj3 (coronavirus* or corona virus* or betacoronavirus* or CoV or
	HCoV)).ti,ab,kf,ot.
4	((coronavirus* or corona virus* or betacoronavirus*) adj3 (p&emic* or epidemic* or outbreak* or crisis)).ti,ab,kf,ot.
5	((wuhan or hubei) adj5 pneumonia).ti,ab,kf,ot.
6	or/1-5 [CADTH COVID-19 filter, no date limit]
7	(((uk or united kingdom or engl& or english or britain or british or kent) adj3 (variant* or voc or vui)) or "b117" or "20i 501yv1" or "variant of concern
	202012 01" or "voc 202012 01" or "variant under investigation in december 2020" or "variant under investigation 202012 01" or "vui 202012
	01").ti,ab,kw,kf.
8	(((south africa* or sa) adj3 (variant* or voc or vui)) or "b1351" or "501v2" or "501yv2" or "20h 501yv2" or "20c 501yv2").ti,ab,kw,kf.
9	((brazil* adj3 (variant* or voc or vui)) or "p1" or "b11281" or ((mutation* or spike*) adj3 (k417t or e484k or n501y))).ti,ab,kw,kf.
10	((mutation* or spike*) adj3 d614g).ti,ab,kw,kf.
11	((india* adj3 (variant* or voc or vui)) or "b1617*" or "g 452v3" or "voc 21apr" or "vui 21apr" or double mutation or double mutant or double variant or
	triple mutation or triple mutant or triple variant or ((mutation* or spike*) adj3 (e484q or l452r or p681r))).ti,ab,kw,kf.
12	((alpha or beta or Gam-ma or delta) adj3 variant*).ti,ab,kw,kf.
13	or/7-12
14	6 & 13

Embase (Elsevier Embase.com)

COVID-19 search filter: CADTH adapted to Embase.com format; line 1 exploded

1	'SARS-related coronavirus'/exp
2	('coronavirinae'/de OR 'betacoronavirus'/de OR 'coronavirus infection'/de) & ('epidemic'/de OR 'p&emic'/de)
3	(ncov* OR 2019ncov OR 19ncov OR covid 19* OR covid OR 'sars-cov-2' OR 'sarscov-2' OR 'sars-cov2' OR sarscov2 OR 'severe acute respiratory syndrome
	coronavirus 2' OR 'severe acute respiratory syndrome corona virus 2'):ti,ab,kw,de,tt,oa,ok
4	((new OR novel OR '19' OR '2019' OR wuhan OR hubei OR china OR chinese) NEAR/3 (coronavirus* OR 'corona virus*' OR betacoronavirus* OR cov OR
	hcov)):ti,ab,kw,de,tt,oa,ok
5	((coronavirus* OR 'corona virus*' OR betacoronavirus*) NEAR/3 (p&emic* OR epidemic* OR outbreak* OR crisis)):ti,ab,kw,tt,oa,ok
6	((wuhan OR hubei) NEAR/5 pneumonia):ti,ab,kw,tt,oa,ok
7	#1 OR #2 OR #3 OR #4 OR #5 OR #6
8	(((uk OR 'united kingdom' OR engl& OR english OR britain OR british OR kent) NEAR/3 (variant* OR voc OR vui)) OR 'b.1.1.7' OR b117 OR '20i 501y.v1'
	OR 'variant of concern 202012 01' OR 'voc 202012 01' OR 'variant under investigation in december 2020' OR 'variant under investigation 202012 01' OR
	'vui 202012 01'):ti,ab,kw
9	((('south africa*' OR sa) NEAR/3 (variant* OR voc OR vui)) OR 'b.1.351' OR b1351 OR '501.v2' OR '501y.v2' OR '20h 501y.v2' OR '20c 501y.v2'):ti,ab,kw
10	((brazil* NEAR/3 (variant* OR voc OR vui)) OR 'p.1' OR p1 OR 'b.1.1.28.1' OR b11281 OR ((mutation* OR spike*) NEAR/3 (k417t OR e484k OR
	n501y))):ti,ab,kw

11	((mutation* OR spike*) NEAR/3 d614g):ti,ab,kw
12	((india* NEAR/3 (variant* OR voc OR vui)) OR 'b.1.617*' OR b1617* OR 'g 452.v3' OR 'voc 21apr' OR 'vui 21apr' OR 'double mutation' OR 'double mutation' OR 'double mutation' OR 'triple mutation'
	p681r))):ti,ab,kw
13	((alpha OR beta OR Gam-ma OR delta) NEAR/3 variant*):ti,ab,kw
14	#8 OR #9 OR #10 OR #11 OR #12 OR #13
15	#7 & #14

Cochrane Database of Systematic Reviews & Cochrane CENTRAL (Cochrane Library, Wiley)

1	MeSH descriptor: [Coronavirus] this term only
2	MeSH descriptor: [Betacoronavirus] this term only
3	MeSH descriptor: [Coronavirus Infections] this term only
4	{or #1-#3}
5	MeSH descriptor: [Disease Outbreaks] this term only
6	MeSH descriptor: [Epidemics] this term only
7	MeSH descriptor: [P&emics] this term only
8	{or #5-#7}
9	#4 & #8
10	(ncov* or 2019ncov or 19ncov or covid19* or covid or "sars-cov-2" or "sarscov-2" or sarscov2 or "severe acute respiratory syndrome coronavirus 2" or
	"severe acute respiratory syndrome corona virus 2"):ti,ab,kw
11	((new or novel or "19" or "2019" or wuhan or hubei or china or chinese) near/3 (coronavirus* or "corona virus*" or betacoronavirus* or cov or
	hcov)):ti,ab,kw
12	((coronavirus* or "corona virus*" or betacoronavirus*) near/3 (p&emic* or epidemic* or outbreak* or crisis)):ti,ab,kw
13	((wuhan or hubei) near/5 pneumonia):ti,ab,kw
14	{or #9-#13}
15	(variant* or voc or vui or mutation* or spike):ti,ab
16	#14 & #15

Epistemonikos Living Overview of the Evidence (LOVE) for COVID-19

Basic search of the following terms within the LOVE:

variant* OR voc OR vui OR "B.1.1.7" OR "20I/501Y.V1" OR "202012/01" OR "B.1.351" OR "501.V2" OR "501Y.V2" OR "20H/501Y.V2" OR "20C/501Y.V2" OR "P.1" OR "B.1.1.28.1" OR "K417T" OR "E484K" OR "N501Y" OR "D614G" OR "B.1.617" OR "B.1.617.1" OR "B.1.617.2" OR "B.1.617.3" OR "G/452.V3" OR "VOC-21APR" OR "VUI-21APR" OR "double mutation" OR "double mutant" OR "triple mutation" OR "triple mutant" OR "L452R" OR "P681R"

medRxiv / bioRxiv

medRxiv & bioRxiv simultaneous search; Date limit changed for each search update (this update: May 11 - July 14, 2021); Title & Abstract search; All words (unless otherwise specified); 50 per page; Best Match; export first 50 results only

Searches:

alpha variant
beta variant
Gam-ma variant
delta variant
uk variant
united kingdom variant
engl& variant
english variant
britain variant
british variant
kent variant
south africa variant
brazil variant
variant of concern (phrase search)
variants of concern (phrase search)
B.1.1.7
20I/501Y.V1
202012/01
B.1.351
501.V2
501Y.V2
20H/501Y.V2
20C/501Y.V2
P.1
B.1.1.28.1
K417T
E484K
N501Y
D614G
india variant
B.1.617
B.1.617.1
B.1.617.2
B.1.617.3
G/452.V3

VOC-21APR	
VUI-21APR	
E484Q	
L452R	
P681R	

References

1. Adamoski D, Oliveira JC de, Bonatto AC, Wassem R, Nogueira MB, Raboni SM, et al. Large-scale screening of asymptomatic for SARS-CoV-2 variants of concern and rapid P.1 takeover, Curitiba, Brazil. medRxiv. 2021 Jun 21;2021.06.18.21258649.

2. Adeyinka DA, Camillo CA, Marks W, Muhajarine N. Implications of COVID-19 vaccination and public health countermeasures on SARS-CoV-2 variants of concern in Canada: evidence from a spatial hierarchical cluster analysis. medRxiv. 2021 Jul 5;2021.06.28.21259629.

3. Aubry M, Teiti I, Teissier A, Richard V, Mariteragi-Helle T, Chung K, et al. Self-collection and pooling of samples as resources-saving strategies for RT-PCRbased SARS-CoV-2 surveillance, the example of travelers in French Polynesia. medRxiv. 2021 Jun 21;2021.06.17.21254195.

4. Berec L, Levínský R, Weiner J, Šmíd M, Neruda R, Vidnerová P, et al. Importance of epidemic severity and vaccine mode of action and availability for delaying the second vaccine dose. medRxiv. 2021 Jul 5;2021.06.30.21259752.

5. Betti M, Bragazzi N, Heffernan J, Kong J, Raad A. Could a New COVID-19 Mutant Strain Undermine Vaccination Efforts? A Mathematical Modelling Approach for Estimating the Spread of B.1.1.7 Using Ontario, Canada, as a Case Study. Vaccines. 2021 Jun;9(6):592.

6. Borchering RK. Modeling of Future COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Rates and Nonpharmaceutical Intervention Scenarios — United States, April–September 2021. MMWR Morb Mortal Wkly Rep [Internet]. 2021 [cited 2021 Jul 27];70. Available from: https://www.cdc.gov/mmwr/volumes/70/wr/mm7019e3.htm

7. Bowie C. Modelling the effect of an improved trace and isolate system in the wake of a highly transmissible Covid-19 variant with potential vaccine escape. medRxiv. 2021 Jun 10;2021.06.07.21258451.

8. Braun P, Braun J, Woodcock BG. COVID-19: Effect-modelling of vaccination in Germany with regard to the mutant strain B.1.1.7 and occupancy of ICU facilities. Int J Clin Pharmacol Ther. 2021 Jul 1;59(07):487–95.

9. Chen C, Packer S, Turner C, Anderson C, Hughes G, Edeghere O, et al. Using Genomic Concordance to Estimate COVID-19 Transmission Risk Across Different Community Settings in England 2020/21. Prepr Lancet [Internet]. 2021 Jun 15 [cited 2021 Jul 27]; Available from: https://papers.ssrn.com/abstract=3867682

10. Conn H, Taylor R, Willis MJ, Wright A, Bramfitt V. Mechanistic model calibration and the dynamics of the COVID-19 epidemic in the UK (the past, the present and the future). medRxiv. 2021 May 22;2021.05.18.21257384.

11. Domenico LD, Sabbatini CE, Boëlle P-Y, Poletto C, Crépey P, Paireau J, et al. Adherence and sustainability of interventions informing optimal control against COVID-19 pandemic. medRxiv. 2021 May 16;2021.05.13.21257088.

12. Dimeglio C, Milhes M, Loubes J-M, Ranger N, Mansuy J-M, Trémeaux P, et al. Influence of SARS-CoV-2 Variant B.1.1.7, Vaccination, and Public Health Measures on the Spread of SARS-CoV-2. Viruses. 2021 May;13(5):898.

13. Du Z, Wang L, Bai Y, Wang X, Pandey A, Chinazzi M, et al. Cost Effective Proactive Testing Strategies During COVID-19 Mass Vaccination: A Modelling Study. Prepr Lancet [Internet]. 2021 Jul 1 [cited 2021 Jul 27]; Available from: https://papers.ssrn.com/abstract=3878074

14. Jayasundara P, Peariasamy KM, Law KB, Rahim KNKA, Lee SW, Ghazali IMM, et al. Sustaining effective COVID-19 control in Malaysia through large-scale vaccination. medRxiv. 2021 Jul 7;2021.07.05.21259999.

15. Lane CR, Sherry NL, Porter AF, Duchene S, Horan K, Andersson P, et al. Genomics-informed responses in the elimination of COVID-19 in Victoria, Australia: an observational, genomic epidemiological study. Lancet Public Health [Internet]. 2021 Jul 9 [cited 2021 Jul 27];0(0). Available from: https://www.thelancet.com/journals/lanpub/article/PIIS2468-2667(21)00133-X/abstract

16. Li R, Li Y, Zou Z, Liu Y, Li X, Zhuang G, et al. Projecting the impact of SARS-CoV-2 variants on the COVID-19 epidemic and social restoration in the United States: a mathematical modelling study. medRxiv. 2021 Jun 27;2021.06.24.21259370.

17. Loenenbach A, Markus I, Lehfeld A-S, Heiden M an der, Haas W, Kiegele M, et al. SARS-CoV-2 variant B.1.1.7 susceptibility and infectiousness of children and adults deduced from investigations of childcare centre outbreaks, Germany, 2021. Eurosurveillance. 2021 May 27;26(21):2100433.

18. Maison DP, Cleveland SB, Nerurkar VR. Genomic Analysis of SARS-CoV-2 Variants of Concern Circulating in Hawai'i to Facilitate Public-Health Policies [Internet]. Research Square. 2021 [cited 2021 Jul 27]. Available from: https://www.researchsquare.com/article/rs-378702/v2

19. Mancuso M, Eikenberry SE, Gumel AB. Will Vaccine-derived Protective Immunity Curtail COVID-19 Variants in the US? medRxiv. 2021 Jul 13;2021.06.30.21259782.

20. Moghadas SM, Sah P, Fitzpatrick MC, Shoukat A, Pandey A, Vilches TN, et al. COVID-19 deaths and hospitalizations averted by rapid vaccination rollout in the United States. medRxiv. 2021 Jul 8;2021.07.07.21260156.

21. Neuberger F, Grgic M, Diefenbacher S, Spensberger F, Lehfeld A-S, Buchholz U, et al. COVID-19 infections in day care centres in Germany: Social and organisational determinants of infections in children and staff in the second and third wave of the pandemic. medRxiv. 2021 Jul 3;2021.06.07.21257958.

22. Nielsen J. Recruiting Test Participants for Usability Studies [Internet]. Nielsen Norman Group. 2003 [cited 2020 Apr 28]. Available from: https://www.nngroup.com/articles/recruiting-test-participants-for-usability-studies/

23. Quilty BJ, Russell TW, Clifford S, Flasche S, Pickering S, Neil SJ, et al. Quarantine and testing strategies to reduce transmission risk from imported SARS-CoV-2 infections: a global modelling study [Internet]. Epidemiology; 2021 Jun [cited 2021 Jul 29]. Available from: http://medrxiv.org/lookup/doi/10.1101/2021.06.11.21258735

24. Quinonez E, Vahed M, Hashemi Shahraki A, Mirsaeidi M. Structural Analysis of the Novel Variants of SARS-CoV-2 and Forecasting in North America. Viruses. 2021 May;13(5):930.

25. Sachak-Patwa R, Byrne H, Dyson L, Thompson R. The risk of SARS-CoV-2 outbreaks in low prevalence settings following the removal of travel restrictions [Internet]. Research Square. 2021 [cited 2021 Jul 27]. Available from: https://www.researchsquare.com/article/rs-547702/v1

26. Sanz-Leon P, Stevenson NJ, Stuart RM, Abeysuriya RG, Pang JC, Lambert SB, et al. Susceptibility of zero community transmission regimes to new variants of SARS-CoV-2: a modelling study of Queensland. medRxiv. 2021 Jul 8;2021.06.08.21258599.

27. Turner D, Égert B, Guillemette Y, Botev J. The tortoise and the hare: The race between vaccine rollout and new COVID variants. 2021 Jun 11 [cited 2021 Jul 27]; Available from: https://www.oecd-ilibrary.org/economics/the-tortoise-and-the-hare-the-race-between-vaccine-rollout-and-new-covid-variants_4098409d-en

28. Yang HM, Junior LPL, Castro FFM, Yang AC. Quarantine, relaxation and mutation explaining the CoViD-19 epidemic in São Paulo State (Brazil). medRxiv. 2021 Apr 15;2021.04.12.21255325.

29. Zou Z, Fairley CK, Shen M, Scott N, Xu X, Li Z, et al. Critical timing for triggering public health interventions to prevent COVID-19 resurgence: a mathematical modelling study. medRxiv. 2021 Jul 7;2021.07.06.21260055.

30. Buchan SA, Tibebu S, Daneman N, Whelan M, Vanniyasingam T, Murti M, et al. Increased household secondary attacks rates with Variant of Concern SARS-CoV-2 index cases. medRxiv. 2021 Apr 5;2021.03.31.21254502.

31. Chudasama DY, Flannagan J, Collin SM, Charlett A, Twohig KA, Lamagni T, et al. Household clustering of SARS-CoV-2 variant of concern B.1.1.7 (VOC-202012–01) in England. J Infect [Internet]. 2021 Apr 29 [cited 2021 May 26];0(0). Available from: https://www.journalofinfection.com/article/S0163-4453(21)00216-4/abstract

32. Victora C, Castro MC, Gurzenda S, Barros AJD. Estimating the early impact of immunization against COVID-19 on deaths among elderly people in Brazil: analyses of secondary data on vaccine coverage and mortality. medRxiv. 2021 Apr 30;2021.04.27.21256187.