

Molecular signatures of mammalian adaptation of avian influenza viruses

Hahn Li[¥], Kyle Amaral[¥], Yona Tugg, Charlotte Fletcher, Vithushan Surendran, Emma Palladino, Imran Ahmed, Karena Wong, Joshua Russell, Sam Afkhami, Matthew S Miller[†]

> [¥]Equal Contribution [†]Senior Author

EXECUTIVE SUMMARY

Preamble

This report summarizes mutations reported to be associated with the mammalian adaptation of avian influenza viruses. This report builds on an excellent review published by Suttie *et al.* (Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. *Virus Genes* **55**: 739–768. 2019). Data up to 2019 was extracted directly from the Suttie *et al.* publication, and new data was captured using an analogous search strategy conducted on July 31, 2024. New data extracted for publications captured in our search are shown in **blue font** in the tables below. Although all subtypes of avian influenza virus were included in the search strategy, there is a bias in data for highly pathogenic avian influenza viruses, and those that more frequently cause spillover infections in humans.

Considerations for interpretation of data

Unlike clinical data, whose quality can be evaluated using standardized approaches such as GRADE, there is no analogous framework for evaluating the quality of experimental and ecological data used to identify molecular markers of viral adaptation. However, several overarching scientific principles can be considered when evaluating the relevance and reliability of this data. For example, the more of the following criteria that are met for a particular molecular signature, the greater the reliability of the data: repeatability (i.e., multiple independent reports), observation of mutation in natural isolates, and experimental validation of phenotype *in vitro* and *in vivo*.

Interpretation of molecular signatures of mammalian adaptation of avian influenza viruses must therefore be interpreted with caution. For example, a mutation that results in adaptation of a particular strain/subtype may not necessarily confer adaptation in the context of a different strain/subtype. Likewise, mutations that result in adaptation in a particular mammalian species (e.g., mice) may not necessarily confer adaptation to other mammalian species, including humans.

The hemagglutinin (HA) protein of influenza viruses can differ in length depending on subtype (and occasionally, by isolate within a given subtype). Unfortunately, a universal convention for HA numbering has not been established – though several studies have proposed frameworks. For subtypes that are commonly studied, specific reference strains are most often used to facilitate sequence alignment [H1 = A/Puerto Rico/8/1934 (H1N1), H3 = A/Aichi/2/1968 (H3N2), H5 =

A/Vietnam/1203/2004 (H5N1)], however, reference strains can differ for lesser-studied subtypes and primary literature must be examined to identify the reference strain.

In the report that follows, we summarize the molecular signatures reported to be associated with mammalian adaptation of avian influenza viruses. Each of the 8 genomic segments of influenza virus is summarized in a discrete section of the report. We have also added additional tables at the conclusion of the report (Tables 9-11) that summarize mutations and phenotypes associated with viral isolates from human and mammalian hosts from 2019-onwards.

MAIN REPORT

Hemagglutinin (HA) (Segment 4)

HA is the primary viral glycoprotein responsible for binding host cell sialic acid receptors and mediating entry. Many of the mutations in hemagglutinin associated with mammalian adaptation either shift receptor binding preference from $\alpha 2,3$ sialic acid (SA) (avian) to $\alpha 2,6$ sialic acid (mammalian), alter the pH required for fusion, or change the thermostability of HA. For example, T160A and Q226L (H3 numbering) have been well-characterized to shift receptor binding preference towards $\alpha 2,6$ sialic acid binding across a variety of influenza virus subtypes. The R-X-R/K-R motifs found at positions 326-329 (H3 numbering) or between 323-330 (H5 numbering) constitute the polybasic cleavage site of H5 and H7 highly pathogenic avian influenza viruses and confer the ability for HA to be cleaved by more promiscuous proteases that can also facilitate replication in tissues outside of the respiratory tract of humans. In the context of A(H5N1), the K387I mutation decreases the pH required for fusion, stabilizing HA and has been shown to enhance virulence in mice.

Table 1. Molecular markers/motifs in the hemagglutinin (HA; segment 4) gene of influenza virus involved in avian influenza virus (AIV) pathogenicity, receptor binding, infectivity, and transmission in (non-human) mammals[†].

Mutation/motif ^b		Phenotype	Subtypes tested	References
H3	H5			
numbering	numbering			
		Increased infectivity in mammalian		
N25 (H4		cells	H4N2	1
numbering)		Decreased binding to $\alpha 2,3$		
V17U		Decreased fusion pH of HA		2
ΥI/Π		Reduced virulence in ferrets	119112	
		Decreased infectivity in	H5N1	
H18Q	H8Q	mammalian cells	(PR8	3
		Increased thermostability of HA	backbone)	

N18D (H4		Decreased thermostability and		1
numbering)		tusion pH of HA	H4N2	
		Decreased binding to a2,3		
		Reducing binding to DC-SIGN		
	N27	Reduced infectivity in mammalian	H5N1	4
		cells		
		Reduced binding to DC-SIGN		
	N39	Reduced infectivity in mammalian	H5N1	4
		cells		
_		Increased infectivity in mammalian		_
A44S		cells	H4N5	5
		Increased infectivity in mammalian		
K64E				6
KO4L		Increased fusion pH of HA	117103	
		Increased visulance in mice (in		
L67V		combination with PB2 E627K)	H1N3	7
	F010	Increased binding to g2 C*		8
D101N	E91G	Increased binding to d2,6"		9
DIUIN	D94N	Increased binding to d2,6		10
	D94S	Increased virus binding to a2,6*	H5N1	10
		Decreased infectivity in	H5N1	
H110Y	H103Y	mammalian cells	(PR8	3
		Increased thermostability of HA	backbone)	
		Increased infectivity in mammalian		
		cells		
A110V		No change in binding to $\alpha 2,3$	H6N2	11
		Decreased fusion pH of HA		
		Increased virulence in mice and		
		guinea pigs		
N110S		Mammalian adaption marker*	H5N1	12
S110N		Human receptor binding	H5N1	13
OTION		specificity*	TIONT	
l111L (H4		Increased infectivity in mammalian		5
numbering)		cells	114103	
		Increased infectivity in mammalian		
A125T (H7		cells		14 15
numbering)		Decreased binding to α2,6	H/N9	14,15
		Immune escape from ferret sera		
S126N	S121N	Increased virus binding to α2,6	H5N1	16
	S123P	Increased binding to a2,6*	H5N1	10
D127N				
(H9		Addition of glycosylation site	H9N2	17
numbering)		Decreased virulence in mice	1.0112	
		Increased binding to a 2.6		
N127D		Increased virulence in mice	H9N2	17

(H9 numbering)				
S127P		Increased α2,6 binding*	H5N6	18
	S128P	Increased binding to a2,6*	H5N6	19
S128P		Associated with antigenic drift/immune escape*	H5N1	12
G133E (H7 numbering)		Increased infectivity in mammalian cells Immune escape from ferret sera	H7N9	14
A135V		Decreases susceptibility to neutralization*	H7N9	20
A125E		Increased binding to α2,3 NeuGc No change in binding to NeuAc	H15N8	21
ATSSE		Increased binding to α2,3 NeuGc No change in binding to NeuAc	H7N3	21
A135T		Increased receptor binding specificity*	H7N7	22
V135T		Addition of glycosylation site Immune escape from chicken sera	H7N9	23
T136S		Increased receptor binding specificity*	H7N7	22
S137K		Stabilizes SA binding pocket of HA	H9N2	24
\$1274	S133A	Increased pseudovirus binding to α2,6 Increased binding to α2,6*	H5N1	25 10,26,27
		Increased binding to α2,6*	H5N6	18,28
A138V	A134V	Increased infectivity in SIAT cells Mammalian adaptation marker*	H5N1	29,30 31
N138H		Stabilized HA binding pocket	H9N2	24
	Q/H/I138N	Increased replication in mammals*	H5N3	32
P139L		Human receptor binding specificity*	H5N1	13
G140R		Increased infectivity in mammalian cells Increased virulence in mice	H7N1	33
R140K		Decreases susceptibility to neutralization*	H7N9	20
N141K		Increased thermostability of HA Decreased infectivity in mammalian cells	H9N2	34

		Decreased α2,6 binding		
T141A		Associated with antigenic drift/immune escape*	H5N1	12
G143R	G139R	Increased virus binding to α2,6	H5N1	35
	E142G	Addition of glycosylation site*	H5N1	8
N144S		Addition of glycosylation site Decreased binding to α2,3 Decreased thermostability of HA	H5N1	36
N149D (H7 numbering)		Increased infectivity in mammalian cells Increased α2,6 binding	H7N9	14
T150A (H9 numbering)		Increased thermostability of HA Increased virulence in mice	H9N2	37
A151T (H7 numbering)		Increased infectivity in mammalian cells Decreased α2,6 binding	H7N9	15
1667		Increased binding to α2,6*	H3N8	38
1551		Increased binding to α2,6*	H9N2	39
S158N	S154N	Increased virus binding to $\alpha 2$ –6	H5N1	16 27
		Decreased virulence in mice	H9N2	40
N158D	N154D	Decreased virulence in mice Increased thermostability of HA	H5N6	41
	D154N	Increased virulence in mice and polymerase activity*	H5N3	42
		Increased virus binding to α2,6	H5N1	16
S159N	S155N/D	Increased virulence in mice*	H5N3	42
		Increased virus binding to α2,6*	H5N1	10
	S158N	Increased binding to α2,6*	H5N6	28
T160ª	T156ª	Addition of glycosylation site Immune escape from chicken sera	H7N9	23
T1604	71504	Increased binding to human-type receptors*	H3N8	43
		Increased virus binding to α2,6, Increased transmission in guinea pigs Decreased infectivity in mammalian cells	H5N1	16,44 26,27,45,46

		In concert with PB2 E627K, increased adaptation in mice*	H5N2	42
		Increased virulence in mice and polymerase activity*	H5N8	42
		Removal of glycosylation site at 158 Increased binding to α2,6*	H5N6	28,47
		Increased binding to α2,6*	H6N2	11
		Increased binding to α2,6*	H7N7	22
		Increased binding to human type receptors*	H6Nx	48
A160T	A156T	Addition of glycosylation site at 158 Increased virulence in mice	H5N6	47
R164Q (H9 numbering)		Increased infectivity in mammalian cells Increased thermostability of HA Immune evasion from chicken sera	H9N2	37
N166D (H9 numbering)		Immune evasion from chicken sera Decreased virulence in mice	H9N2	37
A169T (H7 numbering)		Addition of glycosylation site Immune escape from mouse sera	H7N9	49
	K172T	Increased binding to α2,6*	H5N1	8
	Y173H	Recognizes sialic acid* Increased binding to α2,6*	H5N1	8
A180V (H9 numbering)		Immune escape from sera	H9N2	50
G186V	G182V	Increased binding to α2,6	H7N9	51 52,53
N186K/D	N182K/D	Increased virus binding to α2,6	H5N1	16,30,35,44
	VICON	Increased binding to α2,6 Decreased binding to α2,3*	H5N1	27
VIODIV	V I ÖZIN	Increased binding to α2,6 Decreased binding to α2,3	H13N6	54
N186ª	N183ª	Increased binding to α2,6*	H9N2	55

P186L	P182L	Decreased binding to α2,3	H6N1	56
N186K	N182K	Increased human receptor binding*	H5N1	45
D187G	D183G	Increased virus binding to $\alpha 2,6$	H5N1	57
	D183N	Increased virus binding to α2,6	H5N1	10
E190G	E186G	Increased virus binding to α2,6, maintained α2,3 binding, decreased virulence in mice	H5N1	57,58
E190A/K	E186A/K	Increased infectivity in mammalian cells	H5N1	45
E190V	E186V	Decreased binding to $a_{2,3}$ and $a_{2,6}$	H6N2	59
T190V	T186V	Enhances binding affinity to mammalian cells and replication in mammalian cells	H9N2	60
T192I	T188I	Increased pseudovirus binding to α2,6	H5N1	25
K193R/T	K189R/T	Increased virus binding to $\alpha 2,6$	H5N1	16,61
K193N	K189N	Decreased infectivity in mammalian cells	H5N1 (PR8 backbone)	3
N193ª	N189ª	Increased receptor binding*	H3N8	62
N193D	N189D	Increases infectivity in mammalian cells Increased infectivity in primary human cells Increases binding to α2,6 Increased virulence, viral dissemination outside of respiratory tract, tissue dissemination to brain, in mice Increased virulence, increased contact transmission, in ferrets	H5N1	63
	V190 ^a	Increased replication in mice*	H9N2	55
A/V190E		Stabilizes HA binding pocket	H9N2	24
V190A		Stabilizes HA binding pocket	H9N2	24
H191ª		Increased binding to α2,6* Increased infectivity in mammalian cells*	H9N2	64
T192I		Increased binding to α2,6*	H5N6	65

Q196R/H	Q192R/H	Increased virus binding to α2,6	H5N1	35,57,66
	K193T	Increased binding to human-type receptors*	H13N6	67
N197K	N193K	Increased virus binding to $\alpha 2,6$	H5N1	35
	N198S	Increases α2,6 binding*	H5N1	8
V214I/A	V210I/A	Increased virus binding to α2,6	H5N1	66 10,12
V214I	V210I	Increased polymerase activity* Increased virulence in mice	H5N8	42
	K212E/R/G	Enhances replication in mammals*	H5N3	32
M214V	M225V	Decreased virulence in mice	H5N6	68
	K218Q	Increased virus binding to $\alpha 2,3$ and $\alpha 2,6$	H5N1	10
I220T (H9 numbering)		Increased infectivity in mammalian and avian cells Decreased thermostability of HA Immune escape from chicken and mice sera Increased virulence in mice	H9N2	37
R220G/I		Decreased binding to α2,3, and α2,6 Increased infectivity in mammalian cells Decreased NA activity	H7N9	69
K222Q	K218Q	Decreased infectivity in mammalian cells	H5N1 (PR8 backbone)	3
I223V		Increased thermostability of HA	H5N1	36
N224K		Increased affinity to human type receptors*	H5N1	70
G225W	G236W	Decreased infectivity in mammalian cells Increased fusion pH of HA Decreased thermostability of HA Decreased virulence in mice	H5N6	68
G225D	G221D	Increased virus binding to α2,6	H6N1	71
G225ª		Increased virulence in mammals*	H5N6	72
		Increased virus binding to α2,6	H4N6	73
00001	02221	Increased virus binding to α2,6	H6N2	59
Q226L	Q222L	Increased virus binding to α2,6, decreased binding to α2,3	H5N1	74 45,70

		Increased virus binding to a2,3, decreased binding to a2,6	H7N9	75,76
		Increased virus binding to α2,6 Enhanced replication in mammalian cells and ferrets Enhanced contact transmission in ferrets	H9N2	77,78 39,79
		Loss of binding to a2,3	H10N8	80-82
		Increased binding to human-type receptor*	H5N6	65
		Increased binding to α2,6 Increased infectivity in mammalian cells	H4N5	5
		Increased affinity for α2,6 receptors*	H7N9	52,83
		Increased binding to α2,6 Decreased binding to α2,3 Increased infectivity in mammalian cells Increased pH stability of HA Increased virulence and dissemination outside respiratory tract, increased inflammatory response, in mice	H9N2	84–86
		Increased binding to α2,6	H10N3	87
Q226K	Q222K	Decreased binding to α2,3 Decreased binding to α2,6 Decreased infectivity in mammalian cells Decreased thermostability of HA	H5N1	45
Q226M	Q222M	Increased binding to a,2,6 Decreased infectivity in mammalian and avian cells Decreased thermostability of HA	H9N2	84
Q226R	Q222M	Increased infectivity in mammalian cells	H4N4	5

		Decreased infectivity in	H5N1	45
		Decreased thermostability of HA	HSINT	
		Increased binding to $\alpha 2.6^*$		
226Q	222Q	Increased binding to α2,3*	H9N2	55
L226Q	L222Q	Increased infectivity in mammalian cells Increased virulence in mice Increased stability of HA binding pocket	H9N2	24,88
	L217Q (H7 numbering)	Decreased a2,6 receptor binding Increased thermostability of HA Decreased fusion pH of HA Immune escape*	H7N9	14,15,89
T226A	T222A	Increased binding to α2,6*	H5N1	8
L226I	L222I	Decreased binding to α2,3	H7N9	75
W226	W222	Increased receptor binding specificity*	H3N8	62
S227N	S223N	Increased virus binding to α2,6 and increased infectivity in mammalian cells	H5N1	30,57,74,90,91 45,92
C007D		Increased binding to α2,6*	H5N6	65
5227R	S223R	Increased virus binding to $\alpha 2,3$ and $\alpha 2,6$	H5N1	10
S227G	S223G	Increased infectivity in mammalian cells Decreased binding to α2,6	H5N1	45
S227ª	S223ª	Receptor binding pocket*	H3N8	62
H227Q	H223Q	Increased stability of HA binding pocket	H9N2	24
G228A/S	G224A/S	Increased binding to α2,6, dual receptor specificity	H4N6	73
		Increased viral replication in mammalian cells and virulence in mice	H1N2	93
G228S	G224S	Increased virus binding to a2,6	H5N1	16,56,74,94
		Decreased virus binding to a2,3	H6N2	59
		Decreased binding to $\alpha 2,3$ and $\alpha 2,6$ receptors	H7N9	95

		Decreased binding to α2,3, no binding to α2,6	H10N8	80,82
		Human host adaptation*	H3N8	62
		Increased binding to α2,6*	H10N3	96
G228	G224	Increased binding to α2,6 Increased binding to α2,3* Mammalian adaption marker*	H9N2	55
	C2245/D	Increased binding to s2 C	H5N1	45
G2285/D	G2245/D	increased binding to d2,6	H13N6	67
	L226Q	Increased binding to RBCs*	H7N9	97
R229I		Increased infectivity in mammalian cells Increased NA activity Increased binding to α2,3 Increased binding to α2,6 Increased virulence in mice Immune escape from ferret sera	H7N9	98
L234		Mammalian adaption marker*	H9N2	64
P239S	P235S	Increased virus binding to α2,6	H5N1	66
	Q238L	Increased binding to α2,6* Decreased binding to α2,3* Mammalian adaption marker*	H5N1	8
	Q238R	Increased binding to α2,6* Decreased binding to α2,3* Mammalian adaption marker*	H5N1	8
R246K		Increased infectivity in mammalian cells Increased pH stability of HA Increased virulence, viral dissemination outside of	H9N2	85

		respiratory tract and to brain, increased inflammatory response, in mice		
E255K	E251K	Increased virus binding to a2,6	H5N1	57
E267K		Human receptor binding specificity*	H5N1	13
T318I	T315I	Decreased fusion pH of HA Increased thermostability of HA*	H5N1	3,70
K319A (H9 numbering)		Increased fusion pH of HA	H9N4	99
K319G (H9 numbering)		Increased fusion pH of HA	H9N2	99
K319N (H9 numbering)		Increased fusion pH of HA	H9N5	99
K319S (H9 numbering)		Increased fusion pH of HA	H9N3	99
326 to 329	F 323 to 330 s	Polybasic cleavage motif sequence required for high	H5Nx	100–107
	(11-71-11, 12-11)	viruses	H7Nx	108–110
K387I	K388I	Decreased pH of fusion, increased HA stability, increased replication efficiency and virulence in mice	H5N1	111–113
K393E	K394E	Increased pH of fusion, decreased HA stability, decreased virulence in mice	H7N9	6
M404V		Human receptor binding specificity*	H5N1	13
L513S		Human receptor binding specificity*	H5N1	13
A452T (H7 numbering)		Increased infectivity in mammalian cells Increased virulence in mice	H7N9	114
V537A		Decreased virulence in mice	H5N6	68

T197, G520 (H9 numbering)		Increased aerosol transmission in ferrets*	H9N2	79
I223V, N144S		Increased thermostability of HA Increased infectivity in cells	H5N1	36
S128T, A135E		Increased binding to N- Glycolylneuraminic acid (NeuGc) Decreased binding to N- Acetylneuraminic acid (NeuAc)	H7N3	21
130V, A135E		Increased binding to NeuAc Decreased binding to NeuGc	H7N3	21
T189A, A135E, K193R		Increased binding to NeuGc Decreased binding to NeuAc	H7N3	21
K193R, A135E		Binding to NeuAc and NeuGc	H7N3	21
A135E, D189A, K193R		Increased binding to NeuGc Decreased binding to NeuAc	H15N8	21
Q226L, A138, V186, P221		Increased binding to α2,6	H7N9	53
T40I, T71I, T157I, V223I		Increased binding to α2,6	H7N9	115
T71I, V223I		Increased binding to α2,6	H7N9	115
E83K, S128P	E75K, S123P	Increased virus binding to $\alpha 2,6$	H5N1	35
E83K, S128P, R496K	E75K, S123P, R497K	Increased virus binding to α2,6	H5N1	35
E83K, S128P, N197K, R496K	E75K, S123P, N193K, R497K	Increased virus binding to α2,6	H5N1	35
E83K, N197K	E75K, N193K	Increased virus binding to $\alpha 2,6$	H5N1	35
E83K, N197K, R496K	E75K, N193K, R497K	Increased virus binding to α2,6	H5N1	35
E83K, R496K	E75K, R497K	Increased virus binding to α2,6	H5N1	35
H110Y, T160A, Q226L, G228S (with PB2: E627K; PB1: H99Y)	H103Y, T156A, Q222L, G224S (with PB2: E627K; PB1: H99Y)	Airborne transmissible in ferrets	H5N1	116,117

S114R, T115I	S107R, T108I	Increased virulence in chickens and mice, increased pH of fusion	H5N1	118 27
S119R, I155T, D145G/N, Q156R, H183N, Q226L, Q227M A190T		Preference for human receptor binding*	H9N2	119
S128P, N197K	S123P, N193K	Increased virus binding to α2,6	H5N1	35
S128P, N197K, R496K	S123P, N193K, R497K	Increased virus binding to α2,6	H5N1	35
S128P, R496K	S123P, R497K	Increased virus binding to α2,6	H5N1	35
Δ°, A138V	L129V, A134V	Increased virus binding to α2,6	H5N1	120
Δ, I155T	L129del, I151T	Increased virus binding to α2,6	H5N1	66,120
S137A, T192I	S133A, T188I	Increased pseudovirus binding to α2,6	H5N1	25
G143R, N186K	G139R, N182K	Decreased binding to a2,3, increased virus binding to a2,6	H5N1	35,74
N158D, N224K, Q226L, T318I	N154D, N220K, Q222L, T315I	Transmissible among ferrets	H5N1	121
N158S, Q226L	N154S, Q222L	Increased virus binding to α2,6	H5N1	122
N158S, Q226L, N248D	N154S, Q222L, N244D	Increased virus binding to α2,6	H5N1	56,122
S159N, T160A	S155N, T156A	Increased virus binding to α2,6	H5N1	16,56
S159N, T160A, S227N	S155N, T156A, S223N	Increased virus binding to α2,6, reduced lethality and systemic spread in mice	H5N1	123
T160A, K193T, N224K, Q226L	T156A, K189T, N220K, Q222L	Increased virus binding to α2,6	H5N1	61
T160A, Q226L	T156A, Q222L	Increased virus binding to α2,6	H5N1	16,56

T160A,	T156A,			
Q226L,	Q222L,	Increased virus binding to α2,6	H5N1	16,56,124
G228S	G224S			
T160A,	T156A,	Increased virus binding to α2,6	H5N1	16,56
S227N	S223N			
T160A,				
G186V,		Increased binding to $\alpha 2.6^*$	H7N9	125
G186A,				
Q226L				
V186N,	V182N,	Increased virus binding to α2,6	H7N9	95
N228K	N224K			
V186K/G,	V182 K/G,			05
K193T,	K189T,	Increased virus binding to α2,6	H7N9	95
G228S	G224S			
V186N,	V182N,			
N224K,	N220K,	Increased virus binding to α2,6	H7N9	95
G228S	G224S			
N186K,	N182K,			
Q196R,	Q192R,			
Q226L,	Q222L,	Increased virus binding to α2,6	H5N1	74
S227N,	S223N,			
G228S	G224S			
N186K,	N182K,			
Q226L,	Q222L,	Increased virus binding to a 2.6	H5N1	74
S227N,	S223N,			
G228S	G224S			
N186K,	N182K,			
Q226L,	Q222L,	Increased virus binding to α2,6	H5N1	74
G228S	G224S			
E187G,	E183G,			
E190D,	E186D,			
K193S,	K189S,	Increased virus binding to α2,6	H5N1	126
Q226L,	Q222L,			
G228S	G224S			
E187G,	E183G,			
Q226L,	Q222L,	Increased virus binding to α2,6	H5N1	57
G228S	G224S			
D187G,	D183G,	Increased virus binding to a 2.6	H5N1	57
S227N	S223N			
T189A, G192R	T185A, G188R	Enhanced replication in ferrets, transmitted via aerosols among ferrets	H9N2 (with human H3N2 backbone)	127

E190G,	E186G,	Increased virus hinding to a 2.6	H5N1	57
G2285	G222E,	increased with binding to uz,o	TISINT	
T187P, M227L, PB2- E627K		Increased binding to α2,6 Decreased binding to α2,3 Increased infectivity in mammalian cells Increased virulence in mice Increased contact transmission in guinea pigs	H9N2	128
K193T, G228S	K189T, G224S	Dual α 2,3 and α 2,6 binding	H7N9	95
K193R, Q226L, G228S	K189R, Q222L, G224S	Increased virus binding to α2,6	H5N1	124,126
Q196R, Q226L, S227N, G228S	Q192R, Q222L, S223N, G224S	Increased virus binding to α2,6	H5N1	74
Q196R, Q226L, G228S	Q192R, Q222L, G224S	Increased virus binding to α2,6	H5N1	57,74
Q196R, S227N	Q192R, S223N	Increased virus binding to $\alpha 2,6$	H5N1	57,74
T192I, K193R		Increased binding to α2,6*	H5N1	129
N197K, R496K	N193K, R497K	Increased virus binding to $\alpha 2,6$	H5N1	35
K222Q, S227R	K218Q, S223R	Increased virus binding to $\alpha 2,3$ and $\alpha 2,6$	H5N1	130 27
N224K, G228S	N220K, G224S	Increased virus binding to $\alpha 2,6$	H7N9	95
Q226L, S227N, G228S	Q222L, S223N, G224S	Increased virus binding to α2,6	H5N1	74
		Increased virus binding to α2,6	H4N6	73
Q226L, G228S	Q222L, G224S	Increased virus binding to a2,6; decreased antiviral response in host; reduced tissue tropism in guinea pigs	H5N1	16,44,56,57,74,76,94, 122,124,126,131,132
		Increased virus binding to a2,6	H7N7 (human isolate)	133

	Loss of binding to $\alpha 2,3$, no gain of binding to $\alpha 2,6$	H10N8 (human isolate)	80,81,134
	Increased binding to α2,6	H6N6	135
K222Q, S227R	Increased binding to α2,3*	H5N1	136
L331I/G453 R	Increased virulence in mice	H4N6	137

^a These residues have been ascribed with a particular phenotype when present at the indicated position without reference to the wildtype (WT) residue at that position

^b To facilitate rapid synthesis, mutations found in reports from 2019-onwards are reported using the HA numbering as reported in the accompanying citation. For subtypes that are commonly studied, specific reference strains are most often used to facilitate sequence alignment [H1 = A/Puerto Rico/8/1934 (H1N1), H3 = A/Aichi/2/1968 (H3N2), H5 = A/Vietnam/1203/2004 (H5N1)], however, reference strains can differ for lesser-studied subtypes and primary literature must be examined to identify the reference strain.

*indicates that the phenotype for the mutation has been previously described, but not experimentally verified by the source.

†Mutations in **black font** are directly extracted from Suttie *et al.* Mutations in **blue font** are newly extracted using an analogous search strategy.

Neuraminidase (NA) (Segment 6)

Neuraminidase (NA) is the other major viral glycoprotein. It is typically less abundant on the viral surface than hemagglutinin but plays an essential role in egress by cleaving sialic residues on the host cell surface to prevent aggregation of newly formed viral particles. NA also plays a role in entry by cleaving sialic acid residues on mucins, facilitating viral access to respiratory epithelial cells. Deletions in NA are often observed during adaptation of avian influenza viruses as they jump into poultry or mammalian hosts. NA is also the target of the largest class of antivirals used to treat influenza (NA inhibitors), and many mutations have been described that contribute to resistance against this class of drugs (E.g. H274Y, R292K).

Table 2. Molecular markers/motifs in the neuraminidase (NA; segment 6) gene of avianinfluenza A viruses associated with enhanced virulence and antiviral resistance†.

Mutation/ motif (N2 numbering)	Phenotype	Subtypes tested	References
49–68	Enhanced virulence in mice	H5N1 (with H1N1 backbone)	138,139
deletion	Enhanced virulence in mice	H7N9	140
_ /	Enhanced virulence in mice but not chickens	H5N1	141
54–72 deletion	Enhanced virulence in mice	H7N9	140
	Enhanced virulence in mice and chickens	H1N1	142
54–73 deletion	Enhanced virulence in mice	H7N9	140
54–75 deletion	Enhanced virulence in chickens but not ducks	H7N1	143
54–81 deletion	Enhanced replication in chicken, but not duck, cell line. Enhanced replication in respiratory tract of chickens.	H2N2	144
57–65 deletion	Enhanced virulence in mice	H7N9	145
60-68 deletion	Increased infectivity in mammalian cells* Increased virulence in mice*	H6N6	135
69-73 deletion	Increased virulence in mammals*	H7N9	125

A48D	Increased binding to α2,6 Reduced viral titers in the brain in mice	H5N1	146
V116A	Reduced susceptibility to oseltamivir and zanamivir	H5N1	147,148
1117T	Reduced susceptibility to oseltamivir and	H5N1	149
11171	zanamivir	H13N6	67
	Reduced susceptibility to zanamivir	H4N2	150
E119A	Reduced susceptibility to oseltamivir and zanamivir	H5N1	151,152
	Reduced susceptibility to oseltamivir, zanamivir, peramivir, and laninamivir	H7N9	153
	Reduced susceptibility to zanamivir	H4N2	150
F110D	Reduced susceptibility to oseltamivir, zanamivir, and peramivir	H5N1	151
ETI9D	Reduced susceptibility to oseltamivir, zanamivir, peramivir, and laninamivir	H7N9	153
	Reduced susceptibility to zanamivir	H9N2	154
	Reduced susceptibility to zanamivir	H4N2	150
E119G	Reduced susceptibility to zanamivir and peramivir	H5N1	151
	Reduced susceptibility to zanamivir, peramivir, and laninamivir	H7N9	153
01201	Reduced susceptibility to oseltamivir and zanamivir	H5N1	155
QTOOL	Reduced susceptibility to zanamivir, peramivir, and laninamivir	H7N9	153
R143K	Increased replication in mammals*	H5N3	32
R152K	Reduced susceptibility to laninamivir	H7N9	153
H155Y	Reduced susceptibility to neuraminidase inhibitors	H5N1	12
D198G	Reduced susceptibility to oseltamivir and zanamivir	H5N1	156
V202I	Increased infectivity in mammalian cells	H5N6	41
L204M	Decreased NA activity Decreased infectivity in primary human cells Increased virulence and viral dissemination to the brain, in mice	H5N1	146
1222M	Reduced susceptibility to oseltamivir	H5N1	156

I222K	Reduced susceptibility to oseltamivir, zanamivir, peramivir, and laninamivir	H7N9	153
I222R	Reduced susceptibility to oseltamivir and laninamivir	H7N9	153
I222T	Reduced susceptibility to oseltamivir and peramivir	H7N9	157
T223I	Increased replication in mammals*	H5N3	32
S246N	Reduced susceptibility to oseltamivir	H5N1	148 12
T247P	Reduced susceptibility to oseltamivir and zanamivir	H7N9	153
	Reduced susceptibility to oseltamivir and peramivir	H5N1	151–153,156,158,159
H274Y	Reduced susceptibility to oseltamivir		153
	Reduced susceptibility to oseltamivir and peramivir Decreased NA activity	H7N9	157
275H	Reduced susceptibility to NA inhibitors*	H5N1	160
E276D	Reduced susceptibility to oseltamivir, zanamivir, peramivir, and laninamivir	H7N9	153
E277Q	Reduced susceptibility to oseltamivir	H5N1	161
R289K	Decreased susceptibility to NA inhibitors*	H7N9	89
	Reduced susceptibility to zanamivir	H4N2	150
	Reduced susceptibility to oseltamivir	H6N2	162
R292K	Reduced susceptibility to oseltamivir, zanamivir, peramivir, and laninamivir	H7N9	163,164 165,166
	Reduced susceptibility to oseltamivir	H9N2	154
N294S	Reduced susceptibility to oseltamivir, zanamivir, and peramivir	H5N1	151,152,158,167
	Reduced susceptibility to zanamivir	H7N9	153
S319F	Increased virulence, viral dissemination to brain, in mice Increased binding to α2,6 No change in binding to α2,3	H5N1	146
S327A	Mammalian adaptation marker*	H9N2	64
N366S	Associated with antigenic drift/immune escape*	H5N1	12
3691	Disruption to second sialic acid binding site*	H5N1	27

R371K	Reduced susceptibility to oseltamivir, zanamivir, peramivir, and laninamivir	H7N9	153
A395E	Associated with antigenic drift/immune escape*	H5N1	12
A401T	Increased virus binding to α2–3	H7N9	168
R403W	Mammalian adaptation marker*	H9N2	64
S430G	Increased virulence, viral dissemination to brain, in mice Increased binding to α2,6 No change in binding to α2,3	H5N1	146
K432T	Reduced susceptibility to zanamivir	H5N1	169
V202I, T160A (in HA)	Increased infectivity in mammalian cells Increased virulence in mice	H5N6	41
V202I, A160T (in HA)	Decreased virulence in mice	H5N6	41
A46D, L204M, S319F, S430G	Increased infectivity in primary human cells Increased virulence, viral dissemination to brain, in mice Increased binding to α2,6 No change in binding to α2,3 Decreased NA activity	H5N1	146
I117V, I314V	Reduced susceptibility to oseltamivir	H5N1	147
E119V, E222V	Reduced susceptibility to oseltamivir	H7N9	170
E119A/D/G, H274Y	Reduced susceptibility to oseltamivir, zanamivir, and peramivir	H5N1	151
1222L, S246N	Reduced susceptibility to oseltamivir	H5N1	169
l222M/V, H274Y	Reduced susceptibility to oseltamivir and peramivir	H5N1	156
K150N, I222L, S246N	Reduced susceptibility to oseltamivir	H5N1	148
72T, 370L, 392I, 427I	Confers ability to replicate in murine cells*	N9N2	86

*indicates that the phenotype for the mutation has been previously described, but not experimentally verified by the source.

†Mutations in **black font** are directly extracted from Suttie et al. Mutations in **blue font** are newly extracted using an analogous search strategy.

Polymerase Basic Protein 2 (PB2) (Segment 1)

The polymerase basic protein 2 (PB2) is one of three virally-encoded proteins that form the viral polymerase complex. PB2 recognizes the 5' cap of host mRNAs, which are then cleaved by the viral polymerase complex and added to viral mRNAs to enhance their stability. PB2 interacts with several host proteins and thus adaptive mutations in PB2 are often found when influenza virus jumps into new hosts. Q591K, E627K and D701N are examples of prominent markers of mammalian adaptation in PB2 that have been found across multiple influenza virus subtypes. These mutations tend to enhance the activity of the viral polymerase, leading to more efficient replication in mammals and often increasing virulence.

Table 3. Molecular markers/motifs in the polymerase basic protein 2 (PB2; segment 1) gene of avian influenza A virus associated with polymerase activity, virulence, and transmissibility[†].

Mutation /motif	Phenotype	Subtypes tested	References
D9N	Increased virulence in mice	H5N1	171,172 79
V25A	Increased virulence in mice	H5N1 backbone with H1N1 NS	173
K61R	Decreased PB2 protein expression in mammalian cells	H9N2	174
163T	Decreased pathogenicity in mice	H5N1	141
T63I	Increased virulence in mice*	H7N3	175
	Increased polymerase activity* Increased virulence in mice*	H5N2 (and H5N3, H5N8)	42
	Increased virulence in mice*	H5N8	176
	Increased polymerase activity* Increased virulence in mice*	H7N3	175
L89V	Increased polymerase activity* Increased virulence in mice*	H11N9	177
	Increased virulence in mice*	H9N2	39
	Increased polymerase activity in mammalian cells* Increased virulence in mice*	H13N6	67

S155N	Increased infectivity in mammalian cells Increased virulence in mice	H9N2	178
E158G	Increased polymerase activity in mammalian cell line, increased virulence in mice	H5N2	179
		H5N9	179
E158K	Increased polymerase activity and replication in mammalian cell line, increase virulence in mice	H4N6	137
I76T	Increased polymerase activity, increased infectivity, in mammalian cells	H13N8	180
S181A	Decreased stability of PB2 Increased polymerase activity in mammalian cells Decreased virulence, increased inflammatory immune response, in mice	H5N1	181
S181E	Decreased stability of PB2 Decreased polymerase activity, decreased infectivity, in mammalian cells Decreased virulence, increased inflammatory immune response in mice	H5N1	181
K187Q	Decreased polymerase activity in mammalian cells Increased virulence, increased inflammatory immune response, in mice	H5N1	181
K187R	Decreased polymerase activity in mammalian cells	H5N1	181
E192K	Increased polymerase activity in mammalian and avian cell line, increased virulence in mice	H5N1	182
A199S	Increased virulence in mice	H5N1	172
Q236H	Increase polymerase activity in mammalian cells*	H5N1	27
M238I	Decreased polymerase activity, decreased infectivity in mammalian cells Decreased virulence in mice	H5N1	183
M283L	Increased polymerase activity, increased infectivity in mammalian cells Increased virulence in mice	H5N1	183

K251R	Increased virulence in mice*	H7N3	175
D253N	Increased polymerase activity in mammalian cell line	H9N2	184
D256G	Increased polymerase activity in mammalian cell line	H5N1 backbone with pH1N1 PB2	185
		H3N2 (avian)	186
T271A	Increase polymerase activity in avian and mammalian cell line*	H5N1	187 26,27,188
		H7N9	189
	Increased polymerase activity in mammalian cell line, increased virulence in mice	H9N2	190
I292V	Increased polymerase activity, increased infectivity, decreased antiviral immune response, in mammalian cells Increased virulence, increased mortality, in mice	H9N2	190
	Increased polymerase activity in mammalian cell line	H10N8	191
	Increased pathogenicity and replication in mammalian host*	H13N6	67
V292I	Decreased polymerase activity in mammalian cells Decreased aerosol transmission in guinea pigs	H7N9	192
	Mammalian adaptation marker*	H5N1	12
	Increased polymerase activity* Increased virulence in mice*	H5N2	42
	Increased polymerase activity* Increased virulence in mice*	H7N3	175
G309D	Increased virulence in mice*	H9N2	39
	Increased polymerase activity* Increased virulence in mice*	H11N9	177
	Increased polymerase activity in mammalian cells* Increased virulence in mice*	H13N6	67
T220V	Increased polymerase activity* Increased virulence in mice*	H5N2 (and H5N3, H5N8)	42
19991	Increases pathogenicity in mammals*	H5N6	19

	Increased polymerase activity*	H11N9	177
E358V	Decreased virulence in mice	H7N3	193
K290D	Increased polymerase activity and replication in mammalian cell line	H7N9	194
КЗОЭК	Increased polymerase activity*	H5N1	26,27
L339T	Decreased polymerase activity and decreased virulence in mice	H5N1	195
Q368R	Increased polymerase activity* Increased virulence in mice*	H7N3	175
M473T	Decreased polymerase activity, decreased infectivity, in mammalian cells Decreased virulence, decreased lethality, in mice	H7N9	196
H447Q	Increased polymerase activity* Increased virulence in mice*	H7N3	175
I471T	Change in electrostatic potential*	H7N3	175
	Increased polymerase activity* Increased virulence in mice*	H5N2 (and H3N2, H5N8)	42
R477G	Increased polymerase activity* Increased virulence in mice*	H7N3	175
	Increased virulence in mice*	H9N2	39
K482R	Increased polymerase activity in mammalian cell line	H7N9	197,198
	Increased polymerase activity* Increased virulence in mice*	H5N8 (and H5N2, H5N3)	42
1495V	Increased polymerase activity* Increased virulence in mice*	H7N3	175

	Increased virulence in mice	H9N2	39
I504V	Increased polymerase activity in mice* H13N6		67
	Increased polymerase activity in mammalian cell line	H5N1	199 27,200
K526R	Increased polymerase activity in mammalian cell line	H7N9	199
	Increased infectivity in mammalian cells*	H7N9	89
M535I	Restores viral polymerase activity in mammalian cells in the absence of PB2- E627K*	201	
ME2EI	Increased polymerase activity in mammalian cell line	H7N9	202
MOSOL	Restoration in polymerase activity	H7N9	89
I559T	Increased polymerase activity, increased infectivity, in mammalian cells		180
K562R	Increased polymerase activity Increased infectivity in mammalian cells Increased virulence in mice	H9N2	174
A588T	Can increase the polymerase activity in human H5N1		27
	Increased polymerase activity and replication in mammalian and avian cell lines, increased	H7N9	191
A588V	virulence in mice	H9N2	191 39,174
		H10N8	191 203
	Increased virulence in mice*	H7N9	125
Q591K	Increased polymerase activity in mammalian and avian cell line, increased replication in mammalian cell line, increased virulence in mice	H5N1	182,204

	Increased infectivity in mammalian cells* Increased virulence in mice*	H5N1	10
	Increased virulence, increased mortality, in mice	H5N8	205
	Increased polymerase activity in mammalian and avian cell lines	H7N9	189,202 196
	Increased polymerase activity and replication in mammalian cell line, increased virulence in mice	H9N2	206
V598T/I	Increased polymerase activity and replication	H7N9	194
	mice	H5N1	27
E627K	Increased polymerase activity and replication in mammalian cell line, increase virulence in mice	H4N6	137
	Enhanced polymerase activity, increased virulence in mice, contributes to airborne pathogenicity of IAVs in ferrets and contact transmission in guinea pigs. Decreases polymerase activity and replication in avian cell lines. Decreases virulence in chickens.	H5N1	116,158,172,185,207 –216 13,26,27,200,217
	Increased polymerase activity in mammalian cell lines, increase virulence in mice	H7N7	218,219

	Increased polymerase activity and replication in mammalian cell lines, increased virulence in mice	H7N9	218,220 221
	Enhanced virus replication*	H7N9	125
	Increased polymerase activity in mammalian cell line, increased virulence in mice	H9N2	218,222 174
E627V	Increased polymerase activity and replication in mammalian cell lines, increased virulence in mice	H5N1	182 26
	Increased polymerase activity and increased infectivity in mammalian cell lines Increased virulence in mice	H9N2	174
K627E	Decreased polymerase activity, decreased infectivity, in mammalian cells Decreased aerosol transmission in guinea pigs	H7N9	192
	Decreased infectivity in mammalian cells Decreased virulence, decreased mortality, in mice	H7N9	196
K627E	Increased virulence in chickens	H5N1	223
A676T	Increased polymerase activity*	H5N8 (and H5N2, H5N3)	42
	Increased virulence in mice*	H7N3	175
	Increased polymerase activity in mammalian cells* Increased virulence in mice*	H13N6	67
D701N Increased viral replication in mammalian cells and virulence in mice		H1N2	93

	Increased polymerase activity*	H3N8	43
	Increased polymerase activity, enhanced replication efficiency, increased virulence and contact transmission in guinea pigs, increased virulence in mice	H5N1	44,182,224–226 26
	Increased polymerase activity* Increased virulence in mice*	H5N6	65
	Increased infectivity in mammalian cells Increased virulence, viral dissemination outside of respiratory tract, in mice	H5N8	205,227
	Increased polymerase activity in mammalian cell line	H7N9	189,202 196
	Enhanced adaptability in mammals*	H7N9	125
	Increased polymerase activity in mammalian cell line	H9N2	218
	Enhance replication activity of avian influenza RNA polymerase in humans*	H10N3	87
D701V	Increased polymerase activity and replication in mammalian cell lines, increased virulence in mice	H5N1	182
K702R	Increases polymerase activity* Increased virulence in mice*	H5N1	228

	Decreased PB2 protein expression in mammalian cells	H9N2	174
S714R	Increased polymerase activity and replication in mammalian cell line	H7N7	218,229,230
	Increased polymerase activity in mammalian cell line	H9N2	218
S715N	Decreased virulence in mice	H5N1	231
A717T	Decreased PB2 protein expression in mammalian cells	H9N2	174
Q73E, K526R, L183S, P112L, N100S	Increased polymerase activity	H5N1	232
G74R, F323V, Q507R	Increased polymerase activity H5N1		232
L89V, G309D	Increased polymerase activity in mammalian cells* Increased virulence in mice*	H5N1	27
L89V, A676T, K627E, I495V, R477G, T339K, G309D	Increased polymerase activity*	H11N9	233
E158K, E627K,	Increased polymerase activity, increased infectivity in mammalian cells Increased virulence in mice	H4N6	137
M28I, A274T, K526R, I553V, L607V	Decreased polymerase activity in mammalian cell line	H5N1	234
I283M, K526R	Increased infectivity in mammalian cells Increased inflammatory immune response in mice	H5N8	235

I292V, R389K, A588V, T598M, L648V, T676M	Increased polymerase activity Increased virulence in mice	H10N8	203
L89V, G309D	Increased polymerase activity in mammalian cell line and increased virulence in mice	H5N1	236
L89V, G309D, T339K, R477G, I495V, K627E, A676T	Increased polymerase activity in mammalian cell line and increased virulence in mice	H5N1	236 79
M147L, E627K	Increased polymerase activity in mammalian cell line and virulence in mice H9N2		237
l147T, K339T, A588T	Increased polymerase activity in mammalian cell line and virulence in mice	H5N1	238
I283M, K526R	Increased infectivity in mammalian cells Increased virulence, increased mortality, in mice	H5N8	239
V292I, E627K	Increased polymerase activity, increased infectivity, in mammalian cells	H7N9	240
S489P, NP-V408I	Increased polymerase activity in mammalian cells Increased virulence in ferrets	H5N1	217
K526R, E627K	Increased polymerase activity and viral replication in mammalian cell lines, increased virulence in mice	H5N1	199
		H7N9	199
K526R, R288Q, R288Q/K5 26R	Increased polymerase activity, increased infectivity, in mammalian cells Increased virulence in mice	H5N1	241

E627K, D701N	Increased polymerase activity in mammalian cell line	H7N9	242
E627K,	Increased polymerase activity in mammalian	H7N7	218
S714R	cell lines	H7N9	218
		H9N2	218
E627K, D701N, S714R	Increased polymerase activity in mammalian cells, increased virulence in mice	H9N2	218
E627K, PB1- V719M	Increased polymerase activity, increased infectivity, in mammalian cells Increased virulence, increased inflammatory immune response, increased mortality in mice	H7N9	243
E627K, PA- N444D	Increased polymerase activity, increased infectivity, in mammalian cells Increased virulence, increased inflammatory immune response, increased mortality in mice	H7N9	243
E627K, PB1- V719M, PA- N444D	Increased polymerase activity, increased infectivity, in mammalian cells Increased virulence, increased inflammatory immune response, increased mortality in mice	H7N9	243
E627K, PB1- E739G	Increased infectivity in mammalian cells Increased virulence in mice	H6N1	244
E627K, HA- A110V	Increased polymerase activity, increased infectivity, in mammalian cells Increased virulence in mice	H5N6	11
D701N, S714R	Increased polymerase activity in mammalian cell line, increased virulence in mice	H5N1	245
	Increased polymerase activity in mammalian cell lines	H7N7	218
	Increased polymerase activity in mammalian cell lines	H7N9	218
	Increased polymerase activity in mammalian cell lines	H9N2	218
E627K (with HA: H110Y, T160A,	Enable airborne transmissibility between ferrets and contact transmission between guinea pigs	H5N1	116,117

Q226L,		
G228S;		
PB1:		
H99Y)		

* indicates that the phenotype for the mutation has been previously described, but not experimentally verified by the source.

†Mutations in **black font** are directly extracted from Suttie *et al*. Mutations in **blue font** are newly extracted using an analogous search strategy.

Polymerase Basic Protein 1 (PB1) (Segment 2)

Polymerase basic protein 1 (PB1) is another component of the viral polymerase complex that encodes the polymerase activity required for viral mRNA synthesis and genome replication. In some strains of influenza virus, the PB1 segment also encodes an accessory protein, PB1-F2, which has pleotropic activities, including regulation of apoptosis and modulation of the antiviral response. Most well-characterized mutations in PB1 enhance the activity of the viral polymerase in mammalian cells, which tends to increase viral replication and virulence (e.g. D3V, D622G). There are only limited reports of signatures associated mammalian adaptation in PB1-F2 to-date.

Table 4. Molecular markers/motifs in the polymerase basic protein 1 (PB1; segment 2) gene of influenza A virus associated with polymerase activity, replication, virulence, and transmissibility[†].

Protein	Mutation /motif	Phenotype	Subtypes tested	References
PB1	D3V	Increased polymerase activity and viral replication in avian and mammalian cell lines	H5N1	246 26
		Increased polymerase activity* Increased virulence in mice*	H5N2	42
		Increased polymerase activity* Increased virulence in mice*	H7N3	175
		Increased polymerase activity and replication in mammalian and avian cell lines*	H9N2	79
		Increased polymerase activity and replication in mammalian and avian cells*	H13N6	67
	L13P	Increased polymerase activity* Increased virulence in mice*	H7N3	175
		Enhanced replication in mammals*	H9N2	119
	N66S	Enhanced virulence in mammals*	H6Nx	48
	N105S	Increase polymerase activity and replication in mammalian cell line, Increased virulence in mice	H5N1	182

	K207R	Decreased polymerase activity in mammalian cell line	H5N1	247
	R207K	Increased polymerase activity* Increased virulence in mice*	H7N3	175
	269S	Increased viral polymerase activity and mammalian virulence*	H3N2	248
	K328N	Increased polymerase activity* Increased virulence in mice*	H7N3	175
	1368V	Increased transmission in ferrets*	H7N9	52
	0075N	Increased polymerase activity* Increased virulence in mice*	H7N3	175
	S375N	Increased virulence*	H5N1	12
	N375S	Increased virulence*	H5N1	12
		Increased polymerase activity* Increased virulence in mice* Increased virulence in ferrets*	H7N3	175
	H436Y	Increased polymerase activity* Increased virulence in mice* Increased virulence in ferrets*	H11N9	177
		Increased polymerase activity in mammalian cells* Increased virulence in ducks, ferrets and mice*	H13N6	67
	Y436H	Decreased polymerase activity in mammalian cell line; decreased virulence in ducks, ferrets and mice	H5N1	247

	A469T	Increased aerosol transmission in guinea pigs*	H7N3	175
	L473V	Increased polymerase activity	H7N3	175
	V473L	Decreased polymerase activity and replication efficiency in mammalian cells	H1N1 with PB2, PB1, PA NP from H5N1	249
	S524G	Increased virulence in mice Increased airborne transmission in ferrets	H3N8	38
	K577E	Increased polymerase activity and virulence in mice	H9N2	250
	V598P	Decreased polymerase activity and replication efficiency in mammalian cells	H1N1 with PB2, PB1, PA NP from H5N1	249
	D622G	Increased polymerase activity and virulence in mice	H5N1	251 12,26,27
		Increased polymerase activity* Increased virulence in mice*	H5N2	42
		Increased polymerase activity in mammalian cell lines*	H9N2	79
		Increased polymerase activity, increased virulence in mice*	H13N6	67
	V652A	Increased virulence in mice*	H7N3	175
	M677T	Increased virulence in mice*	H7N3	175

	Increased viral polymerase activity and mammalian virulence*	H3N2	248
T677M	Increased polymerase activity in mammalian cell line, decreased replication efficiency, decreased virulence in mice	H5N1	141
S678N	Increased replication in avian and mammalian cell lines	H7N7	230
P708S	Increased virulence in mice	H5N8	205
V3A, N328K, N375S	Decreased replication efficiency and virulence in ferrets	H5N1	252
1368V, S409N	Increases transmission in mammals*	H9N2	119
V473L, P598L	Decreased polymerase activity and replication in mammalian cells	H1N1 with PB2, PB1, PA NP from H5N1	249
P596S, L598P	Increased polymerase activity	H5N1	232
1674T, 1724V, S720P, F696L, 1674S, 1674L	Increased polymerase activity	H5N1	232
H99Y (with HA: H110Y, T160A, G226L, G228S; PB2: E627K)	Airborne transmissible in ferrets	H5N1	116,117

	N66S	Enhanced replication, virulence and antiviral response in mice	H5N1	253,254
		Increased virulence, increased antiviral immune response, in mice*	H5N1	27
PB1-F2	N66S	Increased virulence in mice*	H5N2 *and H5N8)	42
		Increased virulence in mice*	H7N3	175
	T51M, V56A, E87G	Decrease polymerase activity, replication and virulence in ducks	H5N1	255

†Mutations in **black font** are directly extracted from Suttie *et al.* Mutations in **blue font** are newly extracted using an analogous search strategy.

Polymerase (PA) (Segment 3)

The polymerase protein (PA) is the third and final member of the viral polymerase complex. It is responsible for cleaving 5' caps from host mRNAs. Adaptive mutations in PA most often enhance activity of the polymerase complex, leading to more efficient viral replication in mammalian hosts (e.g., T97I, N383D). PA is also the target of the newest antiviral targeting influenza virus (baloxavir marboxil), and mutations in PA can contribute to antiviral resistance (e.g., A36V). Some strains of influenza also encode PA-X, an accessory protein which contributes to host shut-off by degrading host mRNAs, and attenuating virulence. Therefore, mutations that result in loss of PA-X expression/function have often been associated with increased virulence.

Table 5. Molecular markers/motifs in the polymerase (PA; segment 3) gene of avian influenza A viruses associated with polymerase activity, replication, virulence, and host inflammatory response†.

Protein	Mutation /motif	Phenotype	Subtypes tested	References
	E26K	Decreased infectivity in mammalian and avian cells Increased polymerase activity, Decreased host shutoff	H3N8	256
	K26E	Associated with mammalian adaptation* Increased infectivity in mammalian cells Increased host shutoff	H3N8	62 256
PA	P28L	Mammal adaptation marker*	H5N1	12
	32T	Increased infectivity and polymerase activity in mammalian cells Decreased antiviral response in mammalian cells	H5N8	257
	T32M	Decreased infectivity in mammalian cells Increased antiviral immune responses in mammalian cells	H5N8	257
	A36V	Drug resistance*	H5N1	12
		Increased virulence in mammals*	H5N3	32
	S37A	Increased polymerase activity in mammalian cells*	H5N1	26,27
		Increased infectivity and polymerase activity in mammalian cells*	H7N3	175

	Increased polymerase activity in mammalian cell line	H7N9	197
	Increased polymerase activity in mammalian cells*	H13N6	67
A37S	Decreased polymerase activity in mammalian cell line	H7N7	258
38D	Increased polymerase activity in mammalian and avian cells*	H9N2	64
S49Y	Increased infectivity in mammalian cells Increased virulence and inflammatory response in mice	H9N2	178
V63I	Increase polymerase activity and enhanced replication in mammalian cell line, increased virulence in mice	H7N7	258,259
A70V	Increased polymerase activity*	H9N2	119
T85A	Increased polymerase activity in mammalian cells*	H5N1	8
	Increased virulence in mice*	H3N8	43
	Increased polymerase activity and replication in mammalian cell line, increased virulence in mice	H5N1	182
T97I	Increased polymerase activity in mammalian cell line and enhanced replication in mice	H5N2	260
	Increased polymerase activity in mammalian cells	H6N1	261
	Increased infectivity and polymerase activity in mammalian cells Increased virulence in mice enhanced viral polymerase activity in mammalian cells	H9N2	88
I118T	Decreased host shutoff	H9N2	256
K142N/E	Increased virulence in mice	H5N1	172 27

K158R	Increased polymerase activity in mammalian cell line	H5N1	246
V160D	Associated with mammalian adaptation*	H3N8	62
	Increased polymerase activity in mammalian cells*	H5N1	27
K185R	Enhanced pathogenicity and transmission*	H6N2	11
P190S	Decreased virulence in mice	H7N3	193
E199D	Decreased sensitivity to PA inhibitors*	H9N2	79
H266R	Increased polymerase activity* Increased virulence in birds and mammals*	H7N3	175
F227S	Mammalian host adaption marker*	H7N3	175
C278Q	Mammalian host adaptation marker*	H7N3	175
L336M	Increased infectivity and polymerase activity in mammalian cells	H5N1	232
D347G	Increased infectivity and polymerase activity in mammalian cells Increased virulence and inflammatory response in mice	H9N2	178
G347D	Increased viral polymerase activity and mammalian virulence*	H3N2	248
V256D	Mammalian host adaptation marker* Increased virulence and polymerase activity in mammals*	H3N8	62,262
KSSON	Increase polymerase activity and enhanced replication in mammalian cell line, Increased virulence in mice Increases replication in mammals*	H9N2	263 119
R367K	Increased infectivity in mammalian cells and primary human cells Increased virulence in mice	H5N1	264
N383D	Increased viral polymerase activity and mammalian virulence*	H3N2	248

		Increased polymerase activity in mammalian and avian cell lines Increased virulence in mammals*	H5N1	265,266 26,129
		Increased virulence and transmission in mammals*	H6N2	11
		Increased virulence in mice*	H7N3	175
		Increased polymerase activity in mammalian and avian cell lines*	H13N6	67
	Q400P	Decreased virulence in mice	H7N3	193
	N409S	Increased polymerase activity and replication in mammalian cell line	H7N9	197
		Increased polymerase activity in mammalian cells*	H5N1	26,27
	N409S S409N	Increased polymerase activity and replication in mammalian cell line*	H13N6	67
		Increased virulence*	H10N3	87
		Increased virulence and polymerase activity in mammals*	H3N8	262
	S409N	Potential for enhanced infectivity in humans Potential increased pathogenicity*	H10N3	87
	S421I	Increased virulence in mice	H5N1	172

	R443K	Increased virulence in mice	H5N1	173
	K497R	Increased polymerase activity in mammalian cell line	H7N9 (human isolate)	198
	T515A	Decreased polymerase activity in mammalian cell line, decreased virulence in ducks	H5N1	247
	A515T	Increased polymerase activity, increased virulence in mammals*	H11N9	177
	S/A515T	Increased infectivity in mammals*	H5N3	32
	S/A515T	Increased polymerase activity, increased virulence in mammals and birds*	H7N3	175
, ,	I545V	Increased infectivity in mammalian cells Increased virulence in mice	H9N2	88
	1550L	Increased infectivity and polymerase activity in mammalian cells Decreased antiviral response in mammalian cells Increased virulence in mice	H5N8	67,257
	L550I	Decreased infectivity and polymerase activity in mammalian cells Increased antiviral response in mammalian cells Decreased virulence in mice	H5N8	257
	Q556R	Increased virulence in mice*	H5N8	205
	K615N	Increased infectivity in mammalian cells Increased virulence in mice	H9N2	88

K615N	Increased polymerase activity in mammalian cell line and increased virulence in mice	H7N7	229,230
K615R	Mammalian adaption marker*	H5N1	8
S631G	Increased virulence in mice*	H5N1	8
L653P	Mammalian adaptation marker*	H7N3	175
V100A, S409N	Human host marker*	H7N9	89
32T, 550L	Increased infectivity and polymerase activity in mammalian cells Decreased antiviral response in mammalian cells Increased virulence in mice	H5N8	257
T32M, L550I	Decreased infectivity and antiviral responses in mammalian cells Increased polymerase activity in mammalian cells	H5N8	257
S37A, N383D	Increased polymerase activity in mammalian and avian cell line*	H9N2	79
A343S, D347E	Increased polymerase activity in mammalian cell line, increase virulence in mice	H5N1	268

	P103H, S659L	Decreased polymerase activity replication in mammalian cell line, decreased virulence in mice	H7N7	269
	S224P, N383D	Increased polymerase activity and enhanced viral replication in duck and mouse cell lines, increased virulence in mice and ducks	H5N1	265,266
	S409N, F672L	Increased transmission in mammals*	H9N2	119
	K142R, I147V, I171V, M182L	Increased polymerase activity in mammalian cell line	H7N9	270
	V44I, V127A, C241Y, A343T, I573V	Increased replication in mammalian cell line virulence in mice	H5N1	271
	S149P, H266R, I357K, S515T	Increased polymerase activity in mammalian cell line	H5N1	234
	K356R (with PB2 E627K)	Increase polymerase activity, enhanced replication capacity in mammalian cell line, increased virulence in mice	H9N2	263
	Truncations resulting in loss of PA-X expression	Increased viral replication in mammalian and avian cell lines; increased inflammatory response in mice; increased virulence in mice, chickens, and ducks	H5N1	265,272–275
	Truncations resulting in	Decreased virulence in mice, inhibited host inflammatory response	H9N2	275
Γ Α- Λ	expression T118I	Increased host shutoff	H5N1	276

V127I	Increased host shutoff	H5N1	276
R195K	Increased infectivity in mammalian and primary human cells Increased inflammatory responses in mammalian cells Decreased host shutoff in mammalian cells Increased virulence in mice Increased virulence, and contact and aerosol transmission, in ferret	H7N9	277
K206R	Increased virulence in mice and ferrets	H9N2	277
P210L	Increased virulence in mice and ferrets	H9N2	277

†Mutations in **black font** are directly extracted from Suttie et al. Mutations in **blue font** are newly extracted using an analogous search strategy.

Nucleoprotein (NP) (Segment 5)

The nucleoprotein (NP) of influenza virus interacts with viral RNA as part of the viral ribonucleoprotein complex. NP plays regulatory roles in viral RNA synthesis, facilitates nuclear import of viral RNA, and is essential for virus assembly. Many mutations in NP have phenotypes that enhance the viral polymerase activity and virulence (e.g., N319K, K470R).

Table 6. Molecular markers/motifs in the nucleoprotein (NP; segment 5) gene of influenza A virus associated with polymerase activity, virulence, and transmissibility†.

Mutation /motif	Phenotype	Subtypes tested	References
141Vª	Increased polymerase activity in mammalian cell line	H7N9	242
V41I	Increased viral transmissibility*	H7N3	175
K91R	Decreased polymerase activity in mammalian cell line	H5N1	278
M105V	Increased virulence in chickens	H5N1	279,280
I109T	Increased polymerase activity and viral replication in chickens (but not ducks), increased virulence in chickens	H5N1	279,280
A184K	Increased replication in avian cells and virulence in chickens, enhanced interferon (IFN)response	H5N1	281
K198R	Decreased polymerase activity in mammalian cell line	H5N1	278
E210D	Increased polymerase activity in mammalian cell line	H7N9	242
E2TOD	Increased polymerase activity in mammalian cell line*	H9N2	79
D210E	Increased to viral transmissibility*	H7N3	175
K227R	Increased polymerase activity in mammalian cell line	H5N1	278

F253I	Decreased virulence in mice*	H7N9	175
N210K	Increased polymerase activity and replication in mammalian cell line	H7N7	229,282
113191	Increased polymerase activity in mammalian cells*	H5N1	26
1353V	Increased virulence in mice*	H7N3	175
M374V	Increased infectivity in mammalian cells	H5N8	283
E434K	Increased polymerase activity in mammalian cell line	H9N2	80
T437M	Decreased polymerase activity Decreased infectivity in mammalian cells	H7N9	284
K470R	Increased polymerase activity and replication in mammalian cell line, increased virulence in mice	H5N1	278
T437M, A286V	Decreased virulence in mice	H7N9	284
Q357L (with PB2: E627K)	Increased virulence in mice	H5N1	172
E434K (with HA: Q227P, D375E)	Enhanced contact transmission in guinea pigs	H9N2	80
E434K (with HA: Q227P, PB2: D195N)	Enhanced contact transmission in guinea pigs	H9N2	80
R99K, S345N (with HA: H110Y, T160A, Q226L, G228S; PB2: E627K; PB1: H99Y, I368V	Airborne transmissible in ferrets	H5N1	116

†Mutations in **black font** are directly extracted from Suttie et al. Mutations in **blue font** are newly extracted using an analogous search strategy.

Nonstructural protein (NS) (Segment 8)

The non-structural protein (NS) segment encodes NS1, the main antiviral antagonist protein encoded by influenza virus, and NS2/NEP, which supports nuclear export of viral ribonuclear proteins, regulates the balance of viral RNA synthesis/export, and interacts with M1 to support viral assembly. Mutations in NS1 often enhance the ability of NS1 to antagonize antiviral proteins in new hosts, leading to reduced antiviral responses and enhanced replication/virulence (e.g., P42S).

Table 7. Molecular markers/motifs in the non-structural protein (NS; segment 8) gene of influenza A virus associated with replication, virulence, pathogenicity, and antiviral response[†].

Protein	Mutation /motif	Phenotype	Subtypes tested	References
NS1		Increased virulence in mice*	H3N8	43
		Increased virulence and decreased antiviral response in mice	H5N1	285 12,27
	P42S	Increased virulence and decreased antiviral response in mice*	H9N2	39,64,79
		Increased virulence in mice*	H6Nx	48
		increased virulence in mice*	H13N6	67
	D74N	Enhanced replication in mammalian cells and pathogenicity in mice	H7N1 backbone	286

		with H5N1 NS	
80.84	Increased virulence in chickens	H1N1 (avian)	287
deletion	Increased infectivity in mammalian cells Increased virulence in mice	H5N1	288
80.84	Increased virulence in chickens and mice	H1N1 backbone with H5N1 HA, NA and NS	289
deletion Y84F	Increased virulence in swine	H1N1 backbone with H5N1 NS	289
	Decreases replication in mammalian cells and enhances interferon response	H1N1 with H5N1 NS	290
D92E	Increased virulence in swine and mice	H1N1 backbone with H5N1 NS	291,292
D92E	Increased virulence in chickens and mice	H1N1 backbone with H5N1 HA, NA and NS	289
I106M	Increased viral replication in mammalian cells virulence in mice	H1N1 with all internal genes from H7N9	293
I101M	Increased virulence in mice*	H6Nx	48
L103F	Increased replication in mammals*	H5N6	18

Y103F	Increased virulence in mice*	H5N1	10
	Increased virulence*	H5N1	12,27
I106M	Increased virulence in mice*	H5N2 (and H5N3, H5N8)	42
	Improved replication in mammals*	H5N6	18
	Increased viral replication in mammalian cells and virulence in mice*	H9N2	79
C138F	Increased replication in mammalian cells, decreased interferon response	H5N1	294 27
	Increased virulence in mice*	H5N2	42
V/140A	Increased virulence and decreased interferon response in chickens	H5N1	295 27
V 149A	Increased virulence and viral replication in mammalian cells*	H9N2	39,64
I205N	Decreased antiviral immune response in ferrets*	H5N1	10
V226I	Increased virulence*	H5N1	12
T375G	Decreased infectivity in mammalian cells Decreased virulence in mice	H5N2	296
P42S, E227/S228/E229/V230, N101D	Increased virulence in mice*	H11N9	233
P42S, L103F, M106I, V149A, E227K	Increased virulence in mammals*	H9N2	119

L103E 1106M	Increased virulence in mice	H5N1	297,298 27
21001,110011	Increased virulence in mice*	H11N9	233
N205S (with NS2: T47A)	Decreased antiviral response in ferrets	H5N1	299
G210R (with: NS2 M51I)	Decreased antiviral response in ferrets	H5N1	299
P3S, R41K, D74N	Enhanced replication in mammalian cells and pathogenicity in mice	H7N1 backbone with H5N1 NS	286
R38A, K41A	Decreased replication in mammalian and avian cell line	H7N1	300
42S, 103L, 184G	Increased virulence in mice, decreased interferon response in mice	H9N2	86
K55E, K66E, C138F	Enhanced replication in mammalian cells, decreased interferon response	H5N1	294 27
222–230 deletion	Increased replication in mammalian and avian cell lines	H5N1	301
225–230 deletion	Increased viral replication in avian cell line	H7N1	111,302
225–230 deletion	No impact on viral replication in avian cell lines	H7N1	303
²²⁷ ESEV ²³⁰ (PDZ domain)	Increased virulence in mice	H1N1 pdm09 virus with 'avian' PDZ motif	294 27 301 111,302 303 303 304 301 301
²²⁷ ESEV ²³⁰ (PDZ	Decreased viral replication in mammalian and avian cell lines	H5N1	301
domain) ²²⁷ RSKV ²³⁰ (PDZ domain)	Increased viral replication and virulence in mice, decreased viral replication in human and duck cell lines	H7N1	305

		Increased viral replication in human and duck cell lines but no effect in murine cells	H7N1	305
	230–237 elongation	Increased replication and inflammatory cytokine production in chickens	H9N2	306
	M16I	Increased polymerase activity in mammalian cell line	H5N1	307
	M16I, Y41C, E75G	Increased polymerase activity in mammalian cell line	H5N1	307
NS2/NEP	T47A (with NS1: N205S)	Decreased antiviral response in ferrets	H5N1	299
	M51I (with NS1: G2010R)	Decreased antiviral response in ferrets	H5N1	299

†Mutations in **black font** are directly extracted from Suttie *et al.* Mutations in **blue font** are newly extracted using an analogous search strategy.

Matrix (M) (Segment 7)

The matrix segment encodes the M1 and M2 proteins. M1 is an essential structural protein that creates a proteinaceous "shell" beneath the viral membrane. It plays critical roles in virion assembly and regulates stability of the virus particle. Mutations in M1 (e.g., N30D) are often associated with changes in virion stability, assembly, and immune evasion. M2 is embedded in the viral membrane and forms a proton channel that helps to regulate viral uncoating in the endosome. Most mutations in M2 are associated with resistance to amantadine/rimantadine, antivirals that inhibit M2 ion channel activity, but are no longer widely used to treat seasonal influenza virus due to widespread resistance.

Table 8. Molecular markers/motifs in the matrix (M; segment 7) gene of influenza A virusassociated with virulence and antiviral resistance

Protein	Mutation/motif	Phenotype	Subtypes tested	References
	V15I/T	Increased virulence in mice*	H7N3	175
M1	D30N	Increased infectivity in mammalian cells Affects virus morphology	H5N1	308
		increased viral polymerase activity and mammalian virulence*	H3N2	248
		Enhanced virulence in mice*	H3N8	43
	N30D	Increased virulence in mice	H5N1	309 12
		Increased virulence in mice*	H5N2 (and H5N3, H5N8)	42
		Increased virulence in mice*	H5N6	18
		Increased virulence in mice*	H7N3	175
		Increased virulence in mice*	H9N2	39
		Increased virulence in mice*	H11N9	177
		Increased virulence in mice*	H13N6	67
		Increased virulence in mice*	H6Nx	48
	S31N/G	Increased resistance to amantadine and rimantadine*	H5N1	27,87
		Increased infectivity in mammalian	H5N6	
	T37A	cells Increased virulence in mice	H9N2	310
	I43M	Increased virulence in mice, chickens and ducks	H5N1	311
		Increased virulence in mice*	H5N2	42

	S82N	Mammalian adaption marker*	H5N1	12
		Increased infectivity in mammalian		
	DOFK	cells		312
	RADK	Increased virulence, increased	H9N2	0.2
		mortality in mice		
		Decreased infectivity in mammalian		
	K102R	cells	H5N6	313
		Decreased virulence in mice		
		Decreased infectivity in mammalian		
		cells		
	D156E	Decreased aerosol transmission in	H7N9	192
		guinea pigs		
		Spheroidal virus production		
	A166V	Increased virulence in mice*	H7N3	175
	401FT	Decreased infectivity in mammalian		308
	A2151	cells	H5INT	000
		Increased virulence in mice	H5N1	309
		Increased viral polymerase activity		248
		and mammalian virulence*	FI3INZ	
			H5N1	12
			H3N8	43
			H5N2	42
	1213A		H5N6	18
		Increased virulence in mice*	H7N3	175
			H9N2	39
			H11N9	177
			H13N6	67
			H6Nx	48
		Increased infectivity in mammalian		
	K242N	cells	H9N2	312
		Increased virulence in mice		
	N30D, T215A	Increased virulence in mice*	H11N9	233
	N30D, I43M, T215A	increased virulence in mice*	H9N2	79
		Increased infectivity in mammalian		
	R95K. K242N	cells	H9N2	312
		Increased virulence in mice		
	C148/C151/			000
	H159/H162	Increased virulence in mice*	H11N9	233
	L26F	Increased resistance to amantadine	H5N1	314–316
M2	I/V27A/T/S	Increased resistance to amantadine	H5N1	314–318
		and rimantadine	H5N2	216 219
	A30V/T/S		H5N1	310-318

		Increased resistance to amantadine	H5N2	
		Increased resistance to amantadine	H7N2	
			H9N2	86
			H5N1	
			H5N2	315–321 39,52,79,160
	\$21N/C	Increased resistance to amantadine and rimantadine	H6N2	
	33111/6		H7N9	
			H9N2	
			H10N3	87
	G34E	Increased resistance to amantadine	H5N1	314
	034L	and rimantadine		
	S50C	Increased virulence in mice*	H11N9	233

†Mutations in **black font** are directly extracted from Suttie *et al.* Mutations in **blue font** are newly extracted using an analogous search strategy.

Experimentally validated mammalian adaptive phenotypes associated with constellations of mutations identified in avian influenza virus isolates

In certain cases, influenza isolates of various subtypes have been experimentally tested for adaptation to mammals however, the contribution of specific mutations to the observed phenotypes is not described. Instead, the strains themselves are characterized and the mutations (relative to parental avian isolates) are reported in aggregate. These are captured in the table below. Note that this type of data was not captured in the review by Suttie *et al.*, and so the data below is derived from publications spanning our search from 2019-present.

Table 9. Experimentally verified strains of influenza A virus isolated from avian species containing molecular markers/motifs associated with mammalian adaptation published 2019 – July 2024‡¶.

Subtype	Segment	Mutation/motif	Phenotype	References
	ЦЛ	S137A, S158N, T160A,	Increased infectivity	
	ПА	1192M, 226Q, 228G	in mammalian cells	
	NIA	58-68 deletion, I26T,	Increased virulence,	
		P48L, N59E, M50T, T63I ,	viral dissemination to	28
олісп		164K, M65V, E70G,	brain, in mice	
	INA	D100G, Q216H, K251I,	Decreased contact	
		R275G, T294I, R299M,	transmission in	
		K311T, D375N	ducks	

	PB1-F2	N66S		
	NΛ	l19T, M51V, N325S,		
	NA	G425R	Increased virulence	
H9N2	PB1	I322M	in mice	322
	PA	N614S		
	M2	L47F		
	HA	T220I	Increased infectivity	
H9N2	NA	R344I	in mammalian cells Increased virulence in mice Increased binding to α2,3 Decreased binding to α2,6 Loss of glycosylation site Decreased thermostability of HA	
	HA	D166N, T198V, N201D, L234Q	Increased infectivity in mammalian cells Increased virulence	323
H9N2	NA	D125G, K296N	in mice Increased binding to α2,3 Decreased binding to α2,6 Immune escape from chicken serum	
	HA	D166N, A168T, T198V, L234Q	Increased infectivity in mammalian cells	
H9N2	NA	R253K	Increased virulence in mice Increased binding to α2,3 Decreased binding to α2,6 Immune escape from chicken serum	
	HA	R57K, E129G, A189E, Q226L , R312K	Increased infectivity	
	NA	V102L, V233I, V236I, P264S, N322T, P386T	Increased virulence,	
H7N9	PB1	N213T	hrain in mice	83
11/113	PB2	G74S, K191E, M402I, V511I, M535L , N559T, M570I, E627K , I647V, D701N	Increased binding to α2,6 Decreased binding to α2,3	

	PA	R57Q, I118V, F268L		
	NS1	M27K, A86S		
		T86V, I138N , 150A,		
	HA	202E, 206L, K212E ,		
		237G, 238Q, N376G		
	PB1	A3V, L13P , K328N	Infectivity in	
H5N3	PB1-F2	N66S	Madaat virulanaa in	32
	PB2	Q368R, H447Q	mice	
	PA	S37A , I357T, A515T	THEE	
	NIS1	M31P, D87P, L98I,		
	NOT	I101E, A127R, S228Q		
	NA	I26V		
		D3V, L13P, R207K,		
	DB1	K328N, S375N, H436Y,		
	1 DT	A469T, L473V, V652A,		
		M677T		
	PB1-F2	N66S , T68I		
H7N3		T63I, L89V, K251R,	Infectivity and polymerase activity in mammalian cells Modest virulence in	
	DB2	G309D, Q368R, H447Q,		177
	T DZ	I471T, R477G , I459V,		
		A676T		
		S37A , H226R, F227S ,	mice	
	PA	C278Q, N383D , A515T ,		
		L653P		
	NEP	P42S, A127N, V149A		
	NP	V41I , 1109V, D210E ,		
		F253I, I353V		
	M1	N30D , A116V		
	HA	T160A	Increased virulence	
	PB1	T413I, V609I	in mice	
	PB2	T235I, D408E, N448S,	Viral dissemination	
		D701N	outside of respiratory	
H3N8	PA	T97I , P534S	tract, viral	
	NP	A27V	dissemination in	
	NS1	P42S	brain, in mice	43
			virulence and	
	M1	N30D , T125A	contact transmission	
	000		Virulance in mice	
	PDZ	KT/C, 135A	Virulence in mice,	
H3N8	PA	19/1	outside of respiratory	
	M1	N30D, T215A	tract in mice	
			Decreased fusion nH	
H6N2	HA	A110V, T160A	of HA	11
110112	1		STERV	

			Increased replication	
			in mammalian cells	
			Increased virulence	
			in mice	
	DB2	G158E, G309D , T431M,	Increased replication	
	T DZ	V598T, E627K	in mammalian cells	
	PA	K185R , N338D	Increased virulence	
	M1	N30D, A166V, T125A	in mice	
	PB2	L89V, G309D, T339K	Infectivity in	
	PB1	H436Y	mammalian cells	177
1111113	PA	A515T	Modest virulence in	
	M1	N30D, T215A	mice	
	HA	S155N, T156A		
	DPO	L89V, G309D, T339K,		
	PDZ	R477G, I495V, A676T	Infectivity in	
H5N2	PB1	D3V, D622G	mammalian cells	42
	PB1-F2	N66S	Virulence in mice	
	M1	N30D, I43M, T215A		
	NS1	P42S, I106M, C138F		
	HA	D154N, S155N, T156A		
H5N3	DPO	L89V, G309D, T339K,	Infectivity in	
	FD2	R477G, I495V, A676T	mammalian cells	42
	PB1	D3V, D622G	Virulence in mice	
	M1	N30D, I43M, T215A		
	HA	D154N, S155N, T156A		
	DPO	L89V, G309D, T339K,	Info otivity in	
	FD2	R477G, I495V, A676T		42
	PB1	D3V, D622G	Virulonco in mico	
	M1	N30D, I43M, T215A	VITULETICE ITTTTICE	
	NS1	I106M, C138F		
		D94N, S155N, T156A,		
	ПА	V210I		
	DPO	L89V, G309D, T339K,	la fa setate de sta	
	PB2	R477G, I495V, A676T	Infectivity in	42
H5N8	PB1	D3V, D622G	mammalian cells	72
	PB1-F2	N66S	No virulence in mice	
	M1	N30D, I43M, T215A		
	NS1	P42S, I106M, C138F		
	HA	S127P, S137A		
	PB2	L89V	Virulent in mice	
H5N6	NA	R289K	Viral dissemination	18
	M1	N30D, T215A	outside of respiratory	
	NS1	P42S, L103F. I106M	tract in mice	

H5N6	HA	R44G, D59N, S77R, Q120L, R125S, S128P , A146P, K174R, S188N, V202I , R288S, I274M, S325N, R372K, V400I, E484G, V532A, V537M N80S, K83R, H228Q, A267T, R287G, V304I, I306T	Increased infectivity in mammalian cells Increased binding to a2,6 Increased virulence in mice Viral dissemination outside of respiratory	23
	PB2 M	R144K, T339K , V384L, I457V, M473I, V495A, T524M, N559S, A613V, M636L, R699K, R755G T34A, T183A, Y235C, S333N	tract and viral dissemination in brain of mice Increased virulence and contact transmission in	
	PA	K216T, G359E, V546A	guinea pigo	
	PB1	V22A, E62K		
H7N9	HA	A19S, E81K, I88V, T126K, V125T, S144P, A160T, K310R	Binding to α2,6 and α2,3 Virulent in mice Viral dissemination outside of respiratory tract and viral dissemination in brain of mice	23
	HA	V186G, T160A , A135T, T136S		
	NA	E119P, R152T		
	M1	N30D, T215A	Minul ant in units a	22
H/N/	NS	P42S , D97E, L89Y	virulent in mice	
	PB1	13P, 198K		
	PB2	R389K , N83D		
	PA	V100A		
	HA	183N, 190V, 225G, 228G	Virulent in mice Viral dissemination	
	PB2	E627K, N701D	outside of respiratory	55
H9N2	M2	\$31N	tract and viral dissemination in brain of mice	
	PB2	E627K	Increased virulence	
H1N3	HA	L67V	and increased mortality in mice	7
	PB1	H115Q	Increased infectivity	324
H/N9	PB2	E627K	in mammalian cells	

			Increased virulence	
			in mice	
			Increased airborne	
			transmission in	
			guinea pigs	
		K627E, N701D, L89V,		
	PB2	G309D, T339K, R477G,		
		1495V, K627E, A676T		
	PB1	Y436H	No change in	
	D۸	Q57R, V62I, L65S,	virulence in mice	
	FA	A100V	Viral dissemination	
H11N9	NP	A184K	outside of respiratory	233
	M1	N30D, T215A, C148,	tract and viral	
	IMI 1	C151, H159, H162	dissemination in	
	M2	S50C	brain of mice	
		80–84 deletion, P42S ,		
	NS1	N101D, L103F, I106M,		
		E227, S228, E229, V230		
	PB2	E627V	Binding to α 2,6 and	
	HA	G228S	α2,3	
	M1	N30D, T215A	Increased virulence	
			in mice	
H10N3	MO		Increased contact	96
		\$21N	transmission and	
	112	3311	increased aerosol	
			transmission in	
			guinea pigs	
	HA	T160A		
H6Nx	PB1	N66S	Infectivity in	
	M1	N30D	mammalian cells	48
	1.1.1	T215A	Virulent in mice	
	NIS1	I101M		
	1101	P42S		

‡Bolded mutations are present in tables 1-8.

¶Where the direction of change has not been indicated, the authors are reporting on descriptive phenotypes of an isolate without a comparison to WT virus.

Phenotypes associated with human isolates of avian influenza virus

Several studies have reported mutations found in avian influenza virus isolated from infected humans. In these studies, the authors have often not independently validated the phenotypes associated with particular mutations, but rather make note of those mutations present in the isolates for which phenotypes have previously been described. These mutations are captured in the table below. Note that this type of data was not captured in the review by Suttie *et al.*, and so the data below is derived from publications spanning our search from 2019-present.

Table 10. Molecular markers/motifs found in avian influenza A virus strains isolated fromhumans published 2019- July 2024‡.

Subtype	Segment	Mutation/motif	Phenotype (if known)	Country Isolation year/range	References
	HA	H242Q, N283D, K321E, I479M		China 2018	
	NA	A137V, K296R			
H7N4	PB2	I385L, E627K , K683T	N/A		325
	PB1-F2	N47S			
	PA	F105L, L441M			
	M1	M248I			
	M2	C19Y			
	HA	L217Q	Immune escape from serum*	China 2017	
	NA	R289K	Reduced susceptibility to NA inhibitors*		
H7N9	PB2	K526R M535L D701N	Increased infectivity in mammalian cells* Increased polymerase activity* Increased virulence in mammals*		89
	PA	V100A S409N	Host signature amino acids (avian to human)*		
	NP	V33I	Host signature amino acids (avian to human)*		
H5N1	PA	T85A	Increased polymerase activity in mammalian cells*	Cambodia 2010-2014	
H5N1	PB2	N348Y	M7GTP cap binding site*		8
	PA	K615R	Polymerase human adaptation marker*		

	HA	E91G, K172T, T226A	Increased binding to a2.6*		
	NS1	P159L	Nuclear export signal mask*		
	PB2	N392H	M7GTP cap binding site*		
H5N1	HA	A150V, Y173H, N198S, Q238L	Increased α2,6 binding* Mammalian transmission marker (Q238L)*		
H5N1	PB2	E627K, N701D	Increased mammalian replication*		
	PB2	V667I, S714G	Human association marker (V667I)* Increased pathogenicity (S714G)*		
H5N1	PB1	K353R, T566S	Increased pathogenicity*		
	HA	A150V, Q238R	Increased α2,6 binding* Mammalian transmission marker (Q238R)*		
H5N1	HA	E142G, Q238L	Glycosylation site (E142G)* Mammalian transmission marker (Q238L)*		
	PA	S631G	Increased virulence in mice*		
HONI	NEP	E47G	Increased virulence in ferrets*		
H5N1	PB1	R211G	Interference with host machinery replication*		
	M2	C50Y	Increased virulence*		
	HA	N193, W222, S227, G228S	Increased α2,6 binding Associated with mammalian adaptation*	China 2022	
H3N8	PB2	l292V, K318R, E627K			62
	PB1	L13P, L473V	Associated with		
	PA	K26E, V160D, K365R	adaptation*		
	NP	K398Q			

	NS1	P42S , E227K				
	M1	V15I, N30D,				
	I*I I	T215A				
			Increased virulence and	China		
	PA	K365R, S409	polymerase activity in	2023		
			mammals*		262	
H3N8	_		Decreased		202	
	M2	S31N	susceptibility to			
			amantadine*			
			Increased binding to	China		
	HA	G138V, Q226L	α2,6*	2017		
			Increased transmission			
	PB1	1368V	in ferrets*			
			Species specific			
H7N9	PA	K365R, S409N	signatures*		52	
	104	10050	Decreased host antiviral		_	
	NST	N205S	response*			
			Decreased			
	Μ	S31N	susceptibility to			
			amantadine*			
		T192I, Q226L,		China		
	HA	S2227N/R,	Altered receptor	2014		
		G228S	specificity^			
	NA		Reduced susceptibility			
		E119V/A/D	to neuraminidase			
			inhibitors*			
		V27A,	Reduced succeptibility			
	M2	A30V/T/S,	to amontodino*			
		S31N/G	to amantadine		65	
ПЭМО			Reduced susceptibility			
	PA	PA I38M/T/S/L		to endonuclease		
			inhibitors*			
	DRO	Q591K, E627K,	Increased virulence in			
	PDZ	D701N	mammalian models*			
	NIC1	D92E, L103F,	Altered virulence in			
	1001	I106M	mice*			
	M1	N30D , P41A,	Altered virulence in			
	1*11	T139A, T215A	mice*			
	Ц٨	00061	Increased binding to	China		
	ПА	QZZOL	α2,6*	2024		
	DPO	D701N	Mammalian adaptation			
H10N3	PD2		marker*		87	
		12601/	Increased transmission			
	PDI	13087	in ferrets*			
	PA	S409N	Host signature marker*			

M2 S31N Reduced susceptibility to M2 inhibitors	
--	--

‡Bolded mutations are present in tables 1-8.

Phenotypes associated with mammalian (non-human) isolates of avian influenza virus

As for Table 11, a number of studies have reported mutations found in avian influenza virus isolates that have infected other non-human mammals. The authors have often not independently validated the phenotypes associated with particular mutations, but rather make note of those mutations present in the isolates for which phenotypes have previously been described. These mutations are captured in the table below. Note that this type of data was not captured in the review by Suttie *et al.*, and so the data below is derived from publications spanning our search from 2019-present.

Table 11. Molecular markers/motifs found in avian influenza A virus strains isolated from mammals (excluding humans) published 2019- July 2024‡.

Subtype	Segment	Mutation/motif	Mammal	Phenotype (if known)	References
	PB2	Q591K, D701N		Increased virulence in mice* (Q591K) Mammalian adaptation* (D701N)	
	PB1	L378M, S515A			
	PA	R57Q, T85V, M86I			
	NP	Y289F	Coolier		
H5N1	HA	S123P, S133A , S155D, D138N, V210A, K218Q, S223R	Sea lion	Mammalian adaptation*	10
	NA	S339P			
	M1	N87T			
	NS1	D26E, E60A, Y103F			
	PB2	D701N			
	PB1	L378M			
	PA	R57Q, T85V			
H5N1	HA	H355R, S123P , S133A , S155D, D138N, V210A, K218Q, S223R	Sea lion	Mammalian adaptation*	
	NA	A81T, S339P			
	M1	N87T			
	NS1	D26E, E60A, Y103F, I205N			
	PB1	S515A	Sealion	Mammalian	
TIJNT	PA	R57Q, T85V		adaptation*	

-					
		H335R, S123P,			
	НΔ	S133A , S155D,			
	11A	D138N, V210A,			
		K218Q, S223R			
	NP	Y289F			
	NA	A81T, S339P			
	M1	N87T			
	NS1	D26K, E60F,			
	NOT	Y103F			
	PB2	T215M, N175T			
	PB1	L378M			
	PA	T85A , M86I			
		A496S, S123P ,			
		S133A , S155D,			
	HA	D138N, V210A,		Mammalian	
H5N1		K218Q, S223R	Sea lion	Mammalian adaptation*	
·	ND	M222L, A428T,			
	NP	R452K			
-	NLA	V62I, A81T,			
	NA	S339P			
	M1	N87T			
	NIC1	D26E, E60A,			
	1121	Y103F			
	PB1	L378M			
	PA	T85A			
	НА	S123P, S133A,		Mammalian adaptation*	
		S155D, D138N,			
		V120A, K218Q,	Dolphin		
пэілт		S223R	Dotphin		
	NA	A81T, S339P			
	M1	N87T			
	NS1	D26E, E60A,			
	NOT	Y103F			
	PB2	T271A	Fox	Meningoencephalitis	
H5N1	PB2	M535I		in the brain	_
H5N1	PB1-F2	Т7І	Fox	Large numbers of infected cells in the cerebrum	201
	PB2	T271A			
	PB1	M317V, K388R			
H5N1	PA	M86T	Mink	N/A	326
	HA	I390M			_
	NA	F74S, V163L			
		-			

	NCO	D 400			
		D43G			
H5N1	PB2	K526R, E627K	Domestic cat	Infectivity in mammalian cells	327
	PB2	E627K	5.14	Dark red	
H5N1	PA	V387I	Red fox	oedematous lungs	
	PB2	D701N		Severe acute	
H5N1	PA	K664R	Red fox	multifocal necrotizing pneumonia	
	PB2	I63V, G79S, F154L, K157E, V338T, I398V, T524I, E627K , D701N		Multifocal acute	267
	PA	L532I	Lenner	hemorrhages in	
H5N1	HA	I335K	Lynx	heart and lungs Sever necrotizing pneumonia	
	NA	R220G			
	M1	S272Y			
	M2	L43Y			
	NS1	N4K			
	NS2	N4K			
	HA	K222Q , 226L, S227R , 228S		Meningoencephalitis Immune infiltration	
H5N1	PB2	627E, 701D	Ezo red fox	in the brain Virus detected in brain, lungs, and trachea	136
	HA	K222Q , 226L, S227R , 228S	Topuki	Conjunctivitis and	
плит	PB2	627E , 701D	Тапикі	infection	
	HA	S137A, T160A , A185E, D195T, V198T, E268G, V210A		Combinations of	
H5N1	PB2	L89V, G309D, T339K K389R, R77G, I494V, A676T	Red fox, skunk	seizures, ataxia, lethargy, tremor, rolling on the ground, and other	26
	PB1	D3V, D622G		neurologic signs	
	PA	S37A, N383D, N409S			
	NP	N319K			

LIEN1	HA PB2	S137A, T160A , A185E, D195T, V198T, E268G, V210A L89V, T217A, G309D, T339K K389R , R77G, I494V, A676T	Bed fox		
HUNT	PB1	D3V. D622G	Neutox	00120103	
	PA	S37A, N383D, N409S			
	NP	N319K			
H5N1	HA	S137A, T160A, A185E, D195T, V198T, E268G, V210A			
	PB2	L89V, G309D, T339K K389R, E627K, R77G, I494V, A676T	Red fox	Seizures, lethargy, tremor, and ataxia	
	PB1	D3V, D622G			
	PA	S37A, N383D, N409S			
	NP	N319K			
	HA	S137A, T160A , A185E, D195T, V198T, E268G, V210A			
H5N1	PB2	L89V, G309D, T339K K389R, E627V, R77G, I494V, A676T	Red fox	Neurological signs, seizures	
	PB1	D3V, D622G			
	NP	N319K			
	НΔ	S110N, P139L,		Replicated in nasal	
		L513S		cavity of swine,	
H5N1	PB2	E627K	Red fox	tissue pathology in lung in swine, direct contact transmission in swine	13
H5N1	HA	S110N , M40V	Racoon		

				Replicated in nasal	
				cavity of swine	
				Tissue pathology in	
	PB2	E627K		lung in swine	
				Direct contact	
				transmission in	
				swine	
		N110S, T128P,			
	ПА	T141S, V21A		Neurological	
	NA	H155Y, S248N,		symptoms, seizures,	
		N366S, A39E		depression, noisy	
	PB2	V292I		crying, diarrhea,	
H5N1	PB1	N375S, D622G	Red fox	lethargy, salivating,	12
	PA	P28L, A36V		and choking	
	NC	P42S, I106M,		Virus present in	
	INO	V226I		brain, lungs,	
	м	N30D, S82N,		kidneys, and heart	
	IM	T215A			

\$Bolded mutations are present in tables 1-8.

Acknowledgement

Funding for this report was provided by the Public Health Agency of Canada. Input in evidence synthesis, curation, and report scope was provided by the Public Health Agency of Canada, Health Canada, and the Canadian Food Inspection Agency.

References

- 1. Gischke, M. *et al.* The role of glycosylation in the N-terminus of the hemagglutinin of a unique H4N2 with a natural polybasic cleavage site in virus fitness in vitro and in vivo. *Virulence* **12**, 666–678 (2021).
- 2. Sun, X. *et al*. A naturally occurring HA-stabilizing amino acid (HA1-Y17) in an A(H9N2) lowpathogenic influenza virus contributes to airborne transmission. *mBio* **15**, e02957-23 (2023).
- 3. Hensen, L., Matrosovich, T., Roth, K., Klenk, H.-D. & Matrosovich, M. HA-Dependent Tropism of H5N1 and H7N9 Influenza Viruses to Human Endothelial Cells Is Determined by Reduced Stability of the HA, Which Allows the Virus To Cope with Inefficient Endosomal Acidification and Constitutively Expressed IFITM3. *J Virol* **94**, (2019).
- 4. Yang, Z. S. *et al.* Identification of Important N-Linked Glycosylation Sites in the Hemagglutinin Protein and Their Functional Impact on DC-SIGN Mediated Avian Influenza H5N1 Infection. *Int J Mol Sci* **22**, 1–22 (2021).
- 5. Kamiki, H. *et al*. Influenza A Virus Agnostic Receptor Tropism Revealed Using a Novel Biological System with Terminal Sialic Acid Knockout Cells. *J Virol* **96**, (2022).
- 6. Sun, X. *et al.* Identification of key hemagglutinin residues responsible for cleavage, acid stability, and virulence of fifth-wave highly pathogenic avian influenza A(H7N9) viruses. *Virology* **535**, 232–240 (2019).
- 7. Yang, F. *et al.* Increased virulence of a novel reassortant H1N3 avian influenza virus in mice as a result of adaptive amino acid substitutions. *Virus Genes* **58**, 473–477 (2022).
- 8. Moncla, L. H. *et al.* Quantifying within-host diversity of H5N1 influenza viruses in humans and poultry in Cambodia. *PLoS Pathog* **16**, e1008191 (2020).
- 9. Su, Y., Yang, H. Y., Zhang, B. J., Jia, H. L. & Tien, P. Analysis of a point mutation in H5N1 avian influenza virus hemagglutinin in relation to virus entry into live mammalian cells. *Arch Virol* **153**, 2253–2261 (2008).
- 10. Leguia, M. *et al.* Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru. *Nat Commun* **14**, (2023).
- 11. Tang, S. *et al.* Wild Bird-Origin H6N2 Influenza Virus Acquires Enhanced Pathogenicity after Single Passage in Mice. *Viruses* **16**, (2024).
- Cronk, B. D. *et al.* Infection and tissue distribution of highly pathogenic avian influenza A type H5N1 (clade 2.3.4.4b) in red fox kits (Vulpes vulpes). *Emerg Microbes Infect* **12**, (2023).
- 13. Arruda, B. *et al.* Divergent Pathogenesis and Transmission of Highly Pathogenic Avian Influenza A(H5N1) in Swine. *Emerg Infect Dis* **30**, 738–751 (2024).
- 14. Chang, P. *et al.* Antigenic Characterization of Human Monoclonal Antibodies for Therapeutic Use against H7N9 Avian Influenza Virus. *J Virol* **97**, e01431-22 (2022).
- 15. Chang, P. *et al.* Immune Escape Adaptive Mutations in the H7N9 Avian Influenza Hemagglutinin Protein Increase Virus Replication Fitness and Decrease Pandemic Potential. *J Virol* **94**, (2020).

- 16. Wang, W. *et al.* Glycosylation at 158N of the Hemagglutinin Protein and Receptor Binding Specificity Synergistically Affect the Antigenicity and Immunogenicity of a Live Attenuated H5N1 A/Vietnam/1203/2004 Vaccine Virus in Ferrets. *J Virol* **84**, 6570–6577 (2010).
- 17. Fan, M. *et al.* Mutations of 127, 183 and 212 residues on the HA globular head affect the antigenicity, replication and pathogenicity of H9N2 avian influenza virus. *Transbound Emerg Dis* **69**, e659–e670 (2022).
- 18. Sun, J. *et al.* Novel H5N6 avian influenza virus reassortants with European H5N8 isolated in migratory birds, China. *Transbound Emerg Dis* **67**, 648–660 (2020).
- 19. Zhang, C. *et al.* Pathogenicity and Transmissibility of Goose-Origin H5N6 Avian Influenza Virus Clade 2.3.4.4h in Mammals. *Viruses* **14**, (2022).
- 20. Sun, Y. *et al.* Molecular epidemiologic characteristics of hemagglutinin from five waves of avian influenza A (H7N9) virus infection, from 2013 to 2017, in Zhejiang Province, China. *Arch Virol* **166**, 3323–3332 (2021).
- 21. Spruit, C. M. *et al.* N-Glycolylneuraminic Acid Binding of Avian and Equine H7 Influenza A Viruses. *J Virol* **96**, (2022).
- 22. Tang, W., Li, X., Tang, L., Wang, T. & He, G. Characterization of the low-pathogenic H7N7 avian influenza virus in Shanghai, China. *Poult Sci* **100**, 565–574 (2021).
- 23. Yin, X. *et al.* Genetic and biological properties of H7N9 avian influenza viruses detected after application of the H7N9 poultry vaccine in China. *PLoS Pathog* **17**, (2021).
- 24. Xu, H., Qian, J., Song, Y. & Ming, D. The adaptability of H9N2 avian influenza A virus to humans: A comparative docking simulation study. *Biochem Biophys Res Commun* **529**, 963–969 (2020).
- 25. Yang, Z. Y. *et al.* Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity. *Science (1979)* **317**, 825–828 (2007).
- 26. Alkie, T. N. *et al.* Characterization of neurotropic HPAI H5N1 viruses with novel genome constellations and mammalian adaptive mutations in free-living mesocarnivores in Canada. *Emerg Microbes Infect* **12**, (2023).
- 27. Kareinen, L. *et al.* Highly pathogenic avian influenza A(H5N1) virus infections on fur farms connected to mass mortalities of black-headed gulls, Finland, July to October 2023. *Euro Surveill* **29**, (2024).
- Zhao, W. *et al.* Virulence and transmission characteristics of clade 2.3.4.4b H5N6 subtype avian influenza viruses possessing different internal gene constellations. *Virulence* 14, (2023).
- 29. Naughtin, M. *et al.* Neuraminidase inhibitor sensitivity and receptor-binding specificity of Cambodian clade 1 highly pathogenic H5N1 influenza virus. *Antimicrob Agents Chemother* **55**, 2004–2010 (2011).
- 30. Kongchanagul, A. *et al.* Positive selection at the receptor-binding site of haemagglutinin H5 in viral sequences derived from human tissues. *Journal of General Virology* **89**, 1805–1810 (2008).
- Timofeeva, T. A. *et al.* [The Effect of I155T, K156Q, K156E and N186K Mutations in Hemagglutinin on the Virulence and Reproduction of Influenza A/H5N1 Viruses]. *Molekuliarnaia biologiia* 54, 980–989 (2020).
- 32. Yeo, S. J. *et al.* Emergence of a Novel Reassortant H5N3 Avian Influenza Virus in Korean Mallard Ducks in 2018. *Intervirology* **65**, 1–16 (2022).
- 33. Treshchalina, A. *et al.* Substitution Arg140Gly in Hemagglutinin Reduced the Virulence of Highly Pathogenic Avian Influenza Virus H7N1. *Viruses* **13**, (2021).

- 34. Wen, F. *et al.* Recent H9N2 avian influenza virus lost hemagglutination activity due to a K141N substitution in hemagglutinin. *J Virol* **98**, (2024).
- 35. Yamada, S. *et al.* Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. *Nature 2006 444:7117* **444**, 378–382 (2006).
- 36. An, S. H. *et al.* Novel Mutations Evading Avian Immunity around the Receptor Binding Site of the Clade 2.3.2.1c Hemagglutinin Gene Reduce Viral Thermostability and Mammalian Pathogenicity. *Viruses* **11**, (2019).
- 37. Zhang, J. *et al.* Mutational antigenic landscape of prevailing H9N2 influenza virus hemagglutinin spectrum. *Cell Rep* **42**, (2023).
- Zhang, X. et al. PB1 S524G mutation of wild bird-origin H3N8 influenza A virus enhances virulence and fitness for transmission in mammals. *Emerg Microbes Infect* 10, 1038–1051 (2021).
- Hu, Z. *et al.* Genetic and Molecular Characterization of H9N2 Avian Influenza Viruses Isolated from Live Poultry Markets in Hubei Province, Central China, 2013-2017. *Virol Sin* 36, 291–299 (2021).
- 40. Jin, F. *et al.* A Single Mutation N166D in Hemagglutinin Affects Antigenicity and Pathogenesis of H9N2 Avian Influenza Virus. *Viruses 2019, Vol. 11, Page 709* **11**, 709 (2019).
- 41. Gu, M. *et al.* Effects of HA2 154 deglycosylation and NA V202I mutation on biological property of H5N6 subtype avian influenza virus. *Vet Microbiol* **266**, (2022).
- 42. Tian, J. *et al.* H5 low pathogenic avian influenza viruses maintained in wild birds in China. *Vet Microbiol* **263**, (2021).
- 43. Liang, J. *et al.* Adaptation of Two Wild Bird-Origin H3N8 Avian Influenza Viruses to Mammalian Hosts. *Viruses* **14**, (2022).
- 44. Gao, Y. *et al.* Identification of Amino Acids in HA and PB2 Critical for the Transmission of H5N1 Avian Influenza Viruses in a Mammalian Host. *PLoS Pathog* **5**, e1000709 (2009).
- 45. Eggink, D. *et al.* Phenotypic Effects of Substitutions within the Receptor Binding Site of Highly Pathogenic Avian Influenza H5N1 Virus Observed during Human Infection. *J Virol* **94**, (2020).
- 46. Xie, R. *et al*. The episodic resurgence of highly pathogenic avian influenza H5 virus. *Nature* **622**, 810–817 (2023).
- 47. Gao, R. *et al.* N-linked glycosylation at site 158 of the HA protein of H5N6 highly pathogenic avian influenza virus is important for viral biological properties and host immune responses. *Vet Res* **52**, (2021).
- 48. Li, Y., Li, M., Tian, J., Bai, X. & Li, Y. Genetic characteristics and pathogenicity of novel reassortant H6 viruses isolated from wild birds in China. *Vet Microbiol* **254**, (2021).
- 49. Jang, H. & Ross, T. M. Hemagglutination Inhibition (HAI) antibody landscapes after vaccination with H7Nx virus like particles. *PLoS One* **16**, (2021).
- 50. Zhu, R. *et al*. HA gene amino acid mutations contribute to antigenic variation and immune escape of H9N2 influenza virus. *Vet Res* **53**, 43 (2022).
- 51. Dortmans, J. C. F. M. *et al.* Adaptation of novel H7N9 influenza A virus to human receptors. *Scientific Reports 2013 3:1* **3**, 1–7 (2013).
- 52. Jiang, L. *et al.* Emergence of human avian influenza A(H7N9) virus infections in Wenshan City in Southwest China, 2017. *BMC Infect Dis* **20**, (2020).
- 53. Xu, Y. *et al.* Avian-to-Human Receptor-Binding Adaptation of Avian H7N9 Influenza Virus Hemagglutinin. *Cell Rep* **29**, 2217-2228.e5 (2019).

- 54. Lu, X. *et al.* Structure and Receptor Binding Specificity of Hemagglutinin H13 from Avian Influenza A Virus H13N6. *J Virol* **87**, 9077–9085 (2013).
- 55. Zhang, R. hua *et al.* Molecular characterization and pathogenesis of H9N2 avian influenza virus isolated from a racing pigeon. *Vet Microbiol* **246**, (2020).
- 56. Wang, F. *et al*. Adaptation of avian influenza A (H6N1) virus from avian to human receptorbinding preference. *EMBO J* **34**, 1661–1673 (2015).
- 57. Chen, L. M. *et al.* In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. *Virology* **422**, 105–113 (2012).
- 58. Han, P. *et al.* Mouse lung-adapted mutation of E190G in hemagglutinin from H5N1 influenza virus contributes to attenuation in mice. *J Med Virol* **87**, 1816–1822 (2015).
- 59. Qu, Z. *et al.* Identification of a key amino acid in hemagglutinin that increases human-type receptor binding and transmission of an H6N2 avian influenza virus. *Microbes Infect* **19**, 655–660 (2017).
- 60. Teng, Q. *et al.* A Single Mutation at Position 190 in Hemagglutinin Enhances Binding Affinity for Human Type Sialic Acid Receptor and Replication of H9N2 Avian Influenza Virus in Mice. *J Virol* **90**, 9806–9825 (2016).
- 61. Peng, W. *et al.* Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation. *J Virol* **92**, (2018).
- 62. Yang, R. *et al.* Human infection of avian influenza A H3N8 virus and the viral origins: a descriptive study. *Lancet Microbe* **3**, e824–e834 (2022).
- 63. Jang, S. G. *et al.* HA N193D substitution in the HPAI H5N1 virus alters receptor binding affinity and enhances virulence in mammalian hosts. *Emerg Microbes Infect* **13**, (2024).
- 64. Bedair, N. M. *et al.* Molecular characterization of the whole genome of H9N2 avian influenza virus isolated from Egyptian poultry farms. *Arch Virol* **169**, (2024).
- 65. Zhu, W. *et al.* Epidemiologic, Clinical, and Genetic Characteristics of Human Infections with Influenza A(H5N6) Viruses, China. *Emerg Infect Dis* **28**, 1332–1344 (2022).
- 66. Watanabe, Y. *et al.* Acquisition of Human-Type Receptor Binding Specificity by New H5N1 Influenza Virus Sublineages during Their Emergence in Birds in Egypt. *PLoS Pathog* **7**, e1002068 (2011).
- 67. Flores, R. A. *et al.* Genetic Characterization and Phylogeographic Analysis of the First H13N6 Avian Influenza Virus Isolated from Vega Gull in South Korea. *Viruses* **16**, (2024).
- 68. Kong, X. *et al.* A single-amino-acid mutation at position 225 in hemagglutinin attenuates H5N6 influenza virus in mice. *Emerg Microbes Infect* **10**, 2052–2061 (2021).
- 69. Liu, L. *et al.* The effect of single amino acid substitution at position 220 in the hemagglutinin glycoprotein on avian influenza H7N9 candidate vaccine virus. *Virus Genes* 57, 164–171 (2021).
- 70. Spieler, E. E., Moritz, E., Stertz, S. & Hale, B. G. Application of a Biologically Contained Reporter System To Study Gain-of-Function H5N1 Influenza A Viruses with Pandemic Potential. *mSphere* **5**, (2020).
- 71. de Vries, R. P. *et al.* A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors. *EMBO Mol Med* **9**, 1314–1325 (2017).
- 72. Gu, W. *et al.* Novel H5N6 reassortants bearing the clade 2.3.4.4b HA gene of H5N8 virus have been detected in poultry and caused multiple human infections in China. *Emerg Microbes Infect* **11**, 1174–1185 (2022).
- 73. Song, H. *et al.* Avian-to-Human Receptor-Binding Adaptation by Influenza A Virus Hemagglutinin H4. *Cell Rep* **20**, 1201–1214 (2017).

- 74. Chutinimitkul, S. *et al.* In Vitro Assessment of Attachment Pattern and Replication Efficiency of H5N1 Influenza A Viruses with Altered Receptor Specificity . *J Virol* **84**, 6825– 6833 (2010).
- 75. Xu, R. *et al.* Preferential recognition of avian-like receptors in human influenza A H7N9 viruses. *Science (1979)* **342**, 1230–1235 (2013).
- 76. Ramos, I. *et al.* H7N9 influenza viruses interact preferentially with α2,3-linked sialic acids and bind weakly to α2,6-linked sialic acids. *Journal of General Virology* 94, 2417–2423 (2013).
- 77. Wan, H. & Perez, D. R. Amino Acid 226 in the Hemagglutinin of H9N2 Influenza Viruses Determines Cell Tropism and Replication in Human Airway Epithelial Cells. *J Virol* **81**, 5181–5191 (2007).
- 78. Wan, H. *et al.* Replication and Transmission of H9N2 Influenza Viruses in Ferrets: Evaluation of Pandemic Potential. *PLoS One* **3**, e2923 (2008).
- 79. Atim, G. *et al.* Genetic Evolution of Avian Influenza A (H9N2) Viruses Isolated from Domestic Poultry in Uganda Reveals Evidence of Mammalian Host Adaptation, Increased Virulence and Reduced Sensitivity to Baloxavir. *Viruses* **14**, (2022).
- Sang, X. *et al.* Adaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact and inefficient transmission by respiratory droplets. *Scientific Reports 2015* 5:1 5, 1–13 (2015).
- 81. Tzarum, N. *et al.* The 150-Loop Restricts the Host Specificity of Human H10N8 Influenza Virus. *Cell Rep* **19**, 235–245 (2017).
- 82. Zhang, H. *et al.* A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors. *Cell Host Microbe* **17**, 377–384 (2015).
- 83. Wang, G. *et al.* Mutations during the adaptation of H7N9 avian influenza virus to mice lungs enhance human-like sialic acid binding activity and virulence in mice. *Vet Microbiol* **254**, (2021).
- 84. Sun, Y., Cong, Y., Yu, H., Ding, Z. & Cong, Y. Assessing the effects of a two-amino acid flexibility in the Hemagglutinin 220-loop receptor-binding domain on the fitness of Influenza A(H9N2) viruses. *Emerg Microbes Infect* **10**, 822–832 (2021).
- 85. Liu, Y. *et al.* Natural variant R246K in hemagglutinin increased zoonotic characteristics and renal inflammation in mice infected with H9N2 influenza virus. *Vet Microbiol* **279**, (2023).
- Arbi, M. *et al.* Historical origins and zoonotic potential of avian influenza virus H9N2 in Tunisia revealed by Bayesian analysis and molecular characterization. *Arch Virol* 165, 1527–1540 (2020).
- 87. Dai, J. *et al.* Phylogenetic and mutational analysis of H10N3 avian influenza A virus in China: potential threats to human health. *Front Cell Infect Microbiol* **14**, (2024).
- 88. Ma, L. *et al.* Mutual antagonism of mouse-adaptation mutations in HA and PA proteins on H9N2 virus replication. *Virol Sin* **39**, 56–70 (2024).
- 89. Wu, X. X. *et al.* Novel pathogenic characteristics of highly pathogenic avian influenza virus H7N9: viraemia and extrapulmonary infection. *Emerg Microbes Infect* **9**, 962–975 (2020).
- 90. Gambaryan, A., Tuzikov, A., Pazynina, G., Virology, N. B.- & 2006, undefined. Evolution of the receptor binding phenotype of influenza A (H5) viruses. *ElsevierA Gambaryan, A Tuzikov, G Pazynina, N Bovin, A Balish, A KlimovVirology, 2006*•*Elsevier*.
- 91. Shinya, K. *et al.* A mutation in H5 haemagglutinin that conferred human receptor recognition is not maintained stably during duck passage. *Journal of General Virology* **91**, 1461–1463 (2010).

- 92. Du, W. *et al.* Mutation of the second sialic acid-binding site of influenza A virus neuraminidase drives compensatory mutations in hemagglutinin. *PLoS Pathog* **16**, (2020).
- 93. Yu, Z. *et al.* PB2 and hemagglutinin mutations confer a virulent phenotype on an H1N2 avian influenza virus in mice. *Arch Virol* **164**, 2023–2029 (2019).
- 94. Stevens, J. *et al.* Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. *Science (1979)* **312**, 404–410 (2006).
- 95. de Vries, R. P. *et al.* Three mutations switch H7N9 influenza to human-type receptor specificity. *PLoS Pathog* **13**, e1006390 (2017).
- 96. Liu, K. *et al.* Emergence of a novel reassortant avian influenza virus (H10N3) in Eastern China with high pathogenicity and respiratory droplet transmissibility to mammals. *Sci China Life Sci* **65**, 1024–1035 (2022).
- 97. Wang, Y. *et al.* L226Q Mutation on Influenza H7N9 Virus Hemagglutinin Increases Receptor-Binding Avidity and Leads to Biased Antigenicity Evaluation. *J Virol* **94**, (2020).
- 98. Tang, J. *et al.* R229I substitution from oseltamivir induction in HA1 region significantly increased the fitness of a H7N9 virus bearing NA 292K. *Emerg Microbes Infect* **13**, (2024).
- 99. Blaurock, C. *et al.* Non-basic amino acids in the hemagglutinin proteolytic cleavage site of a European H9N2 avian influenza virus modulate virulence in turkeys. *Sci Rep* **10**, (2020).
- Bosch, F. X., Garten, W., Klenk, H. D. & Rott, R. Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. *Virology* 113, 725–735 (1981).
- Perdue, M. L., García, M., Senne, D. & Fraire, M. Virulence-associated sequence duplication at the hemagglutinin cleavage site of avian influenza viruses. *Virus Res* 49, 173–186 (1997).
- 102. Webster, R. & Rott, R. Influenza virus A pathogenicity: the pivotal role of hemagglutinin. (1987).
- 103. Subbarao, K. *et al.* Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. *Science (1979)* **279**, 393–396 (1998).
- Horimoto' And, T. & Kawaoka12, Y. Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. *J Virol* 68, 3120–3128 (1994).
- 105. Schrauwen, E. J. A. *et al.* The Multibasic Cleavage Site in H5N1 Virus Is Critical for Systemic Spread along the Olfactory and Hematogenous Routes in Ferrets. *J Virol* **86**, 3975–3984 (2012).
- 106. Suguitan, A. L. *et al.* The Multibasic Cleavage Site of the Hemagglutinin of Highly Pathogenic A/Vietnam/1203/2004 (H5N1) Avian Influenza Virus Acts as a Virulence Factor in a Host-Specific Manner in Mammals. *J Virol* 86, 2706–2714 (2012).
- 107. Zhang, Y. *et al.* A Single Amino Acid at the Hemagglutinin Cleavage Site Contributes to the Pathogenicity and Neurovirulence of H5N1 Influenza Virus in Mice. *J Virol* **86**, 6924–6931 (2012).
- 108. Zhu, W. *et al.* Biological characterisation of the emerged highly pathogenic avian influenza (HPAI) A(H7N9) viruses in humans, in mainland China, 2016 to 2017. *Eurosurveillance* **22**, 30533 (2017).
- 109. Sun, X. et al. Pathogenesis and Transmission Assessments of Two H7N8 Influenza A Viruses Recently Isolated from Turkey Farms in Indiana Using Mouse and Ferret Models. J Virol 90, 10936–10944 (2016).

- Abdelwhab, E. M. *et al.* Composition of the Hemagglutinin Polybasic Proteolytic Cleavage Motif Mediates Variable Virulence of H7N7 Avian Influenza Viruses. *Scientific Reports 2016* 6:1 6, 1–14 (2016).
- 111. Abdelwhab, E. S. M. *et al.* Prevalence of the C-terminal truncations of NS1 in avian influenza A viruses and effect on virulence and replication of a highly pathogenic H7N1 virus in chickens. *Virulence* **7**, 546–557 (2016).
- 112. Reed, M. L. *et al.* Amino Acid Residues in the Fusion Peptide Pocket Regulate the pH of Activation of the H5N1 Influenza Virus Hemagglutinin Protein. *J Virol* **83**, 3568–3580 (2009).
- Krenn, B. M. *et al.* Single HA2 Mutation Increases the Infectivity and Immunogenicity of a Live Attenuated H5N1 Intranasal Influenza Vaccine Candidate Lacking NS1. *PLoS One* 6, e18577 (2011).
- 114. Chan, M. *et al.* H7N9 Influenza Virus Containing a Polybasic HA Cleavage Site Requires Minimal Host Adaptation to Obtain a Highly Pathogenic Disease Phenotype in Mice. *Viruses* **12**, (2020).
- 115. Zhang, T. *et al.* Identifying novel amino acid substitutions of hemagglutinin involved in virulence enhancement in H7N9 virus strains. *Virol J* **18**, (2021).
- 116. Herfst, S. *et al.* Airborne transmission of influenza A/H5N1 virus between ferrets. *Science* (1979) **336**, 1534–1541 (2012).
- 117. Linster, M. *et al.* Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. *Cell* **157**, 329–339 (2014).
- 118. Wessels, U. *et al.* A Dual Motif in the Hemagglutinin of H5N1 Goose/Guangdong-Like Highly Pathogenic Avian Influenza Virus Strains Is Conserved from Their Early Evolution and Increases both Membrane Fusion pH and Virulence. *J Virol* **92**, 778–796 (2018).
- 119. Yang, F. *et al.* Molecular characterization and antigenic analysis of reassortant H9N2 subtype avian influenza viruses in Eastern China in 2016. *Virus Res* **306**, (2021).
- 120. Auewarakul, P. *et al*. An Avian Influenza H5N1 Virus That Binds to a Human-Type Receptor. *J Virol* **81**, 9950–9955 (2007).
- Imai, M. *et al.* Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. *Nature 2012 486:7403* 486, 420–428 (2012).
- 122. Ilyushina, N. A., Govorkova, E. A., Gray, T. E., Bovin, N. V. & Webster, R. G. Human-Like Receptor Specificity Does Not Affect the Neuraminidase-Inhibitor Susceptibility of H5N1 Influenza Viruses. *PLoS Pathog* **4**, e1000043 (2008).
- 123. Yen, H. L. *et al.* Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread. *Proc Natl Acad Sci U S A* **106**, 286–291 (2009).
- 124. Stevens, J. *et al.* Recent Avian H5N1 Viruses Exhibit Increased Propensity for Acquiring Human Receptor Specificity. *J Mol Biol* **381**, 1382–1394 (2008).
- 125. Wu, Y. *et al.* Accelerated Evolution of H7N9 Subtype Influenza Virus under Vaccination Pressure. *Virol Sin* **36**, 1124–1132 (2021).
- 126. Maines, T. R. *et al.* Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses. *Virology* **413**, 139–147 (2011).
- 127. Sorrell, E. M., Wan, H., Araya, Y., Song, H. & Perez, D. R. Minimal molecular constraints for respiratory droplet transmission of an avian-human H9N2 influenza A virus. *Proc Natl Acad Sci U S A* **106**, 7565–7570 (2009).

- 128. Liu, K. *et al.* Enhanced pathogenicity and transmissibility of H9N2 avian influenza virus in mammals by hemagglutinin mutations combined with PB2-627K. *Virol Sin* **38**, 47–55 (2023).
- 129. Xing, X. *et al.* Evolution and biological characterization of H5N1 influenza viruses bearing the clade 2.3.2.1 hemagglutinin gene. *Emerg Microbes Infect* **13**, (2024).
- 130. Guo, H. *et al.* Highly Pathogenic Influenza A(H5Nx) Viruses with Altered H5 Receptor-Binding Specificity. *Emerg Infect Dis* **23**, 220 (2017).
- 131. Harvey, R., Martin, A. C. R., Zambon, M. & Barclay, W. S. Restrictions to the Adaptation of Influenza A Virus H5 Hemagglutinin to the Human Host. *J Virol* **78**, 502–507 (2004).
- 132. Ayora-Talavera, G. *et al.* Mutations in H5N1 Influenza Virus Hemagglutinin that Confer Binding to Human Tracheal Airway Epithelium. *PLoS One* **4**, e7836 (2009).
- Srinivasan, K., Raman, R., Jayaraman, A., Viswanathan, K. & Sasisekharan, R. Quantitative Description of Glycan-Receptor Binding of Influenza A Virus H7 Hemagglutinin. *PLoS One* 8, e49597 (2013).
- 134. Zhang, H. et al. A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors. cell.comH Zhang, RP de Vries, N Tzarum, X Zhu, W Yu, R McBride, JC Paulson, IA WilsonCell host & microbe, 2015•cell.com.
- 135. Xu, X. *et al.* Epidemiology, evolution, and biological characteristics of H6 avian influenza viruses in China. *Emerg Microbes Infect* **12**, (2023).
- 136. Hiono, T. *et al.* Virological, pathological, and glycovirological investigations of an Ezo red fox and a tanuki naturally infected with H5N1 high pathogenicity avian influenza viruses in Hokkaido, Japan. *Virology* **578**, 35–44 (2023).
- 137. Xu, G. *et al.* Mutations in PB2 and HA enhanced pathogenicity of H4N6 avian influenza virus in mice. *Journal of General Virology* **101**, 910–920 (2020).
- Matsuoka, Y. *et al.* Neuraminidase Stalk Length and Additional Glycosylation of the Hemagglutinin Influence the Virulence of Influenza H5N1 Viruses for Mice. *J Virol* 83, 4704– 4708 (2009).
- 139. Zhou, H. *et al.* The Special Neuraminidase Stalk-Motif Responsible for Increased Virulence and Pathogenesis of H5N1 Influenza A Virus. *PLoS One* **4**, e6277 (2009).
- 140. Bi, Y. *et al.* Changes in the Length of the Neuraminidase Stalk Region Impact H7N9 Virulence in Mice. *J Virol* **90**, 2142–2149 (2016).
- Li, J., Dohna, H. Z., Cardona, C. J., Miller, J. & Carpenter, T. E. Emergence and Genetic Variation of Neuraminidase Stalk Deletions in Avian Influenza Viruses. *PLoS One* 6, e14722 (2011).
- Munier, S. *et al.* A Genetically Engineered Waterfowl Influenza Virus with a Deletion in the Stalk of the Neuraminidase Has Increased Virulence for Chickens. *J Virol* 84, 940–952 (2010).
- 143. Hoffmann, T. W. *et al.* Length Variations in the NA Stalk of an H7N1 Influenza Virus Have Opposite Effects on Viral Excretion in Chickens and Ducks. *J Virol* **86**, 584–588 (2012).
- 144. Sorrell, E. M., Song, H., Pena, L. & Perez, D. R. A 27-Amino-Acid Deletion in the Neuraminidase Stalk Supports Replication of an Avian H2N2 Influenza A Virus in the Respiratory Tract of Chickens. *J Virol* **84**, 11831–11840 (2010).
- 145. Park, S. *et al.* Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses. *Scientific Reports 2017 7:1* **7**, 1–14 (2017).

- 146. Scheibner, D. *et al.* Phenotypic effects of mutations observed in the neuraminidase of human origin H5N1 influenza A viruses. *PLoS Pathog* **19**, (2023).
- 147. Hurt, A. C. *et al.* Susceptibility of highly pathogenic A(H5N1) avian influenza viruses to the neuraminidase inhibitors and adamantanes. *Antiviral Res* **73**, 228–231 (2007).
- 148. Boltz, D. A. *et al.* Emergence of H5N1 avian influenza viruses with reduced sensitivity to neuraminidase inhibitors and novel reassortants in Lao People's Democratic Republic. *Journal of General Virology* **91**, 949–959 (2010).
- 149. Kode, S. S. *et al.* A novel I117T substitution in neuraminidase of highly pathogenic avian influenza H5N1 virus conferring reduced susceptibility to oseltamivir and zanamivir. *Vet Microbiol* **235**, 21–24 (2019).
- 150. Gubareva, L. V, Robinson, M. J., Bethell, R. C. & Webster, R. G. Catalytic and framework mutations in the neuraminidase active site of influenza viruses that are resistant to 4-guanidino-Neu5Ac2en. *J Virol* **71**, 3385–3390 (1997).
- 151. Baek, Y. H. *et al.* Profiling and Characterization of Influenza Virus N1 Strains Potentially Resistant to Multiple Neuraminidase Inhibitors. *J Virol* **89**, 287–299 (2015).
- 152. Ilyushina, N. A., Seiler, J. P., Rehg, J. E., Webster, R. G. & Govorkova, E. A. Effect of Neuraminidase Inhibitor–Resistant Mutations on Pathogenicity of Clade 2.2 A/Turkey/15/06 (H5N1) Influenza Virus in Ferrets. *PLoS Pathog* 6, e1000933 (2010).
- 153. Gubareva, L. V. *et al*. Drug Susceptibility Evaluation of an Influenza A(H7N9) Virus by Analyzing Recombinant Neuraminidase Proteins. *J Infect Dis* **216**, S566–S574 (2017).
- 154. Kode, S. S. *et al.* Selection of avian influenza A (H9N2) virus with reduced susceptibility to neuraminidase inhibitors oseltamivir and zanamivir. *Virus Res* **265**, 122–126 (2019).
- 155. Hurt, A. C., Lowther, S., Middleton, D. & Barr, I. G. Assessing the development of oseltamivir and zanamivir resistance in A(H5N1) influenza viruses using a ferret model. *Antiviral Res* 87, 361–366 (2010).
- Hurt, A. C., Holien, J. K. & Barr, I. G. In vitro generation of neuraminidase inhibitor resistance in A(H5N1) influenza viruses. *Antimicrob Agents Chemother* 53, 4433–4440 (2009).
- 157. Ge, Y. *et al.* The evolution and characterization of influenza A(H7N9) virus under the selective pressure of peramivir. *Virology* **536**, 58–67 (2019).
- 158. Le, Q. M. *et al.* Isolation of drug-resistant H5N1 virus. *Nature 2005 437:7062* **437**, 1108–1108 (2005).
- 159. Nguyen, H. T. *et al.* Antiviral Susceptibility of Highly Pathogenic Avian Influenza A(H5N1) Viruses Isolated from Poultry, Vietnam, 2009–2011. *Emerg Infect Dis* **19**, 1963 (2013).
- 160. Marandino, A. *et al.* Spreading of the High-Pathogenicity Avian Influenza (H5N1) Virus of Clade 2.3.4.4b into Uruguay. *Viruses* **15**, (2023).
- 161. Govorkova, E. A. *et al.* Efficacy of oseltamivir therapy in ferrets inoculated with different clades of H5N1 influenza virus. *Antimicrob Agents Chemother* **51**, 1414–1424 (2007).
- 162. Gillman, A. et al. Oseltamivir Resistance in Influenza A(H6N2) Caused by an R292K Substitution in Neuraminidase Is Not Maintained in Mallards without Drug Pressure. PLoS One 10, e0139415 (2015).
- 163. Hai, R. *et al.* Influenza A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility. *Nature Communications 2013 4:1* **4**, 1–9 (2013).
- 164. Sleeman, K. *et al.* R292K Substitution and Drug Susceptibility of Influenza A(H7N9) Viruses. *Emerg Infect Dis* **19**, 1521 (2013).

- 165. Chen, R. *et al.* Characterization of viral genomic mutations in novel influenza A (H7N9)infected patients: the association between oseltamivir-resistant variants and viral shedding duration. *Virus Genes* **55**, 592–599 (2019).
- 166. Lou, X. *et al.* Detecting the Neuraminidase R294K Mutation in Avian Influenza A (H7N9) Virus Using Reverse Transcription Droplet Digital PCR Method. *Viruses* **15**, (2023).
- 167. Earhart, K. C. *et al.* Oseltamivir resistance mutation N294S in human influenza A(H5N1) virus in Egypt. *J Infect Public Health* **2**, 74–80 (2009).
- Dai, M. *et al.* Mutation of the Second Sialic Acid-Binding Site, Resulting in Reduced Neuraminidase Activity, Preceded the Emergence of H7N9 Influenza A Virus. *J Virol* 91, (2017).
- 169. Creanga, A. *et al.* Highly Pathogenic Avian Influenza A(H5N1) Viruses at the Animal–Human Interface in Vietnam, 2003–2010. *J Infect Dis* **216**, S529–S538 (2017).
- 170. Marjuki, H. *et al.* Characterization of Drug-Resistant Influenza A(H7N9) Variants Isolated From an Oseltamivir-Treated Patient in Taiwan. *J Infect Dis* **211**, 249–257 (2015).
- 171. Graef, K. M. *et al.* The PB2 Subunit of the Influenza Virus RNA Polymerase Affects Virulence by Interacting with the Mitochondrial Antiviral Signaling Protein and Inhibiting Expression of Beta Interferon. *J Virol* **84**, 8433–8445 (2010).
- 172. Kim, J. H. *et al.* Role of host-specific amino acids in the pathogenicity of avian H5N1 influenza viruses in mice. *Journal of General Virology* **91**, 1284–1289 (2010).
- 173. Zhao, D. *et al.* Molecular Determinants of Virulence and Stability of a Reporter-Expressing H5N1 Influenza A Virus. *J Virol* **89**, 11337–11346 (2015).
- 174. Elgendy, E. M. *et al.* Double mutations in the H9N2 avian influenza virus PB2 gene act cooperatively to increase viral host adaptation and replication for human infections. *J Gen Virol* **102**, (2021).
- 175. Trinh, T. T. T. *et al.* Genetic Characterization and Pathogenesis of Avian Influenza Virus H7N3 Isolated from Spot-Billed Ducks in South Korea, Early 2019. *Viruses* **13**, (2021).
- 176. Valley-Omar, Z. *et al.* Human surveillance and phylogeny of highly pathogenic avian influenza A(H5N8) during an outbreak in poultry in South Africa, 2017. *Influenza Other Respir Viruses* **14**, 266–273 (2020).
- 177. Tuong, H. T., Nguyen, N. M., Sung, H. W., Park, H. & Yeo, S. J. Genetic Characterization of Avian Influenza A (H11N9) Virus Isolated from Mandarin Ducks in South Korea in 2018. *Viruses* 12, (2020).
- Guo, Y. *et al.* Exploring the alternative virulence determinants PB2 S155N and PA S49Y/D347G that promote mammalian adaptation of the H9N2 avian influenza virus in mice. *Vet Res* 54, 97 (2023).
- 179. Zhou, B. *et al.* PB2 Residue 158 Is a Pathogenic Determinant of Pandemic H1N1 and H5 Influenza A Viruses in Mice. *J Virol* **85**, 357–365 (2011).
- 180. Meng, B. *et al.* Evolutionary Events Promoted Polymerase Activity of H13N8 Avian Influenza Virus. *Viruses* **16**, (2024).
- 181. Hu, J. *et al.* Phosphorylation of PB2 at serine 181 restricts viral replication and virulence of the highly pathogenic H5N1 avian influenza virus in mice. *Virol Sin* **39**, 97–112 (2024).
- Taft, A. S. *et al.* Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus. *Nature Communications 2015* 6:1 6, 1–12 (2015).
- 183. Chen, S. *et al.* Substitutions in the PB2 methionine 283 residue affect H5 subtype avian influenza virus virulence. *Transbound Emerg Dis* **67**, 2554–2563 (2020).

- Zhang, J. *et al.* The D253N Mutation in the Polymerase Basic 2 Gene in Avian Influenza (H9N2) Virus Contributes to the Pathogenesis of the Virus in Mammalian Hosts. *Virol Sin* 33, 531–537 (2018).
- Manzoor, R. *et al.* PB2 Protein of a Highly Pathogenic Avian Influenza Virus Strain A/chicken/Yamaguchi/7/2004 (H5N1) Determines Its Replication Potential in Pigs. *J Virol* 83, 1572–1578 (2009).
- 186. Bussey, K. A., Bousse, T. L., Desmet, E. A., Kim, B. & Takimoto, T. PB2 Residue 271 Plays a Key Role in Enhanced Polymerase Activity of Influenza A Viruses in Mammalian Host Cells. *J Virol* **84**, 4395–4406 (2010).
- 187. Foeglein, Á. *et al.* Influence of PB2 host-range determinants on the intranuclear mobility of the influenza a virus polymerase. *Journal of General Virology* **92**, 1650–1661 (2011).
- 188. Moreno, A. *et al.* Asymptomatic infection with clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) in carnivore pets, Italy, April 2023. *Euro Surveill* **28**, (2023).
- Mok, C. K. P. *et al.* Amino Acid Substitutions in Polymerase Basic Protein 2 Gene Contribute to the Pathogenicity of the Novel A/H7N9 Influenza Virus in Mammalian Hosts. *J Virol* 88, 3568–3576 (2014).
- 190. Gao, W. *et al.* Prevailing I292V PB2 mutation in avian influenza H9N2 virus increases viral polymerase function and attenuates IFN-β induction in human cells. *Journal of General Virology* **100**, 1273–1281 (2019).
- 191. Xiao, C. *et al.* PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses. *Scientific Reports 2016 6:1* **6**, 1–13 (2016).
- 192. Kong, H. *et al.* Identification of Key Amino Acids in the PB2 and M1 Proteins of H7N9 Influenza Virus That Affect Its Transmission in Guinea Pigs. *J Virol* **94**, (2019).
- 193. DesRochers, B. L. *et al.* Residues in the PB2 and PA genes contribute to the pathogenicity of avian H7N3 influenza A virus in DBA/2 mice. *Virology* **494**, 89–99 (2016).
- 194. Hu, M. *et al.* PB2 substitutions V598T/I increase the virulence of H7N9 influenza A virus in mammals. *Virology* **501**, 92–101 (2017).
- Liu, Y. *et al.* Structural and functional characterization of K339T substitution identified in the PB2 subunit cap-binding pocket of influenza A virus. *Journal of Biological Chemistry* 288, 11013–11023 (2013).
- 196. Zhang, M. *et al.* PB2 residue 473 contributes to the mammalian virulence of H7N9 avian influenza virus by modulating viral polymerase activity via ANP32A. *J Virol* **98**, (2024).
- 197. Yamayoshi, S. *et al.* Virulence-Affecting Amino Acid Changes in the PA Protein of H7N9 Influenza A Viruses. *J Virol* **88**, 3127–3134 (2014).
- 198. Yamayoshi, S. *et al.* Enhanced Replication of Highly Pathogenic Influenza A(H7N9) Virus in Humans. *Emerg Infect Dis* **24**, 746 (2018).
- 199. Song, W. *et al.* The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication. *Nature Communications 2014 5:1* **5**, 1–12 (2014).
- 200. Domańska-Blicharz, K. *et al.* Outbreak of highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus in cats, Poland, June to July 2023. *Euro Surveill* **28**, (2023).
- 201. Lagan, P. *et al.* Highly pathogenic avian influenza A(H5N1) virus infection in foxes with PB2-M535I identified as a novel mammalian adaptation, Northern Ireland, July 2023. *Euro Surveill* **28**, (2023).
- 202. Chen, G. W. *et al.* Genomic Signatures for Avian H7N9 Viruses Adapting to Humans. *PLoS One* **11**, e0148432 (2016).

- 203. Li, B. *et al.* The PB2 co-adaptation of H10N8 avian influenza virus increases the pathogenicity to chickens and mice. *Transbound Emerg Dis* **69**, 1794–1803 (2022).
- 204. Shinya, Y. *et al.* Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus. *PLoS Pathog* **6**, e1001034 (2010).
- 205. Chokkakula, S. *et al.* Mammalian adaptation risk in HPAI H5N8: a comprehensive model bridging experimental data with mathematical insights. *Emerg Microbes Infect* **13**, (2024).
- 206. Wang, C., Lee, H. H. Y., Yang, Z. F., Mok, C. K. P. & Zhang, Z. PB2-Q591K Mutation Determines the Pathogenicity of Avian H9N2 Influenza Viruses for Mammalian Species. *PLoS One* **11**, e0162163 (2016).
- 207. Hatta, M. *et al.* Growth of H5N1 Influenza A Viruses in the Upper Respiratory Tracts of Mice. *PLoS Pathog* **3**, e133 (2007).
- 208. Hatta, H., Gao, P., Halfmann, P. & Kawaoka, Y. Molecular basis for high virulence of Hong Kong H5N1 influenza a viruses. *Science (1979)* **293**, 1840–1842 (2001).
- 209. Bogs, J. *et al.* Reversion of PB2-627E to -627K during Replication of an H5N1 Clade 2.2 Virus in Mammalian Hosts Depends on the Origin of the Nucleoprotein. *J Virol* **85**, 10691–10698 (2011).
- 210. Long, J. S. *et al.* The Effect of the PB2 Mutation 627K on Highly Pathogenic H5N1 Avian Influenza Virus Is Dependent on the Virus Lineage. *J Virol* **87**, 9983–9996 (2013).
- 211. Richard, M. *et al.* Mutations Driving Airborne Transmission of A/H5N1 Virus in Mammals Cause Substantial Attenuation in Chickens only when combined. *Scientific Reports 2017 7*:1 **7**, 1–13 (2017).
- 212. Chen, H. *et al.* Polygenic virulence factors involved in pathogenesis of 1997 Hong Kong H5N1 influenza viruses in mice. *Virus Res* **128**, 159–163 (2007).
- 213. Shinya, K. *et al.* PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. *Virology* **320**, 258–266 (2004).
- 214. Fornek, J. L. *et al.* A Single-Amino-Acid Substitution in a Polymerase Protein of an H5N1 Influenza Virus Is Associated with Systemic Infection and Impaired T-Cell Activation in Mice. *J Virol* **83**, 11102–11115 (2009).
- 215. Mase, M. *et al.* Recent H5N1 avian Influenza A virus increases rapidly in virulence to mice after a single passage in mice. *Journal of General Virology* **87**, 3655–3659 (2006).
- 216. Bortz, E. *et al*. Host- and strain-specific regulation of influenza virus polymerase activity by interacting cellular proteins. *mBio* **2**, (2011).
- 217. Butler, J. *et al.* Insights into the Acquisition of Virulence of Avian Influenza Viruses during a Single Passage in Ferrets. *Viruses* **11**, (2019).
- 218. Sediri, H., Thiele, S., Schwalm, F., Gabriel, G. & Klenk, H. D. PB2 subunit of avian influenza virus subtype H9N2: A pandemic risk factor. *Journal of General Virology* **97**, 39–48 (2016).
- 219. De Jong, R. M. *et al.* Rapid emergence of a virulent PB2 E627K variant during adaptation of highly pathogenic avian influenza H7N7 virus to mice. *Virol J* **10**, 1–11 (2013).
- 220. Zhang, H. *et al.* The PB2 E627K mutation contributes to the high polymerase activity and enhanced replication of H7N9 influenza virus. *Journal of General Virology* **95**, 779–786 (2014).
- 221. Petric, P. P. *et al.* Increased Polymerase Activity of Zoonotic H7N9 Allows Partial Escape from MxA. *Viruses* **14**, (2022).
- 222. Sang, X. *et al.* Rapid emergence of a PB2-E627K substitution confers a virulent phenotype to an H9N2 avian influenza virus during adaption in mice. *Arch Virol* **160**, 1267–1277 (2015).

- 223. Schat, K. A. *et al.* Role of Position 627 of PB2 and the Multibasic Cleavage Site of the Hemagglutinin in the Virulence of H5N1 Avian Influenza Virus in Chickens and Ducks. *PLoS One* **7**, e30960 (2012).
- 224. Steel, J., Lowen, A. C., Mubareka, S. & Palese, P. Transmission of Influenza Virus in a Mammalian Host Is Increased by PB2 Amino Acids 627K or 627E/701N. *PLoS Pathog* **5**, e1000252 (2009).
- 225. Le, Q. M., Sakai-Tagawa, Y., Ozawa, M., Ito, M. & Kawaoka, Y. Selection of H5N1 Influenza Virus PB2 during Replication in Humans. *J Virol* **83**, 5278–5281 (2009).
- 226. Li, Z. *et al.* Molecular Basis of Replication of Duck H5N1 Influenza Viruses in a Mammalian Mouse Model. *J Virol* **79**, 12058–12064 (2005).
- 227. Floyd, T. *et al.* Encephalitis and Death in Wild Mammals at a Rehabilitation Center after Infection with Highly Pathogenic Avian Influenza A(H5N8) Virus, United Kingdom. *Emerg Infect Dis* **27**, 2856–2863 (2021).
- 228. El-Shesheny, R. *et al.* Continued Evolution of H5Nx Avian Influenza Viruses in Bangladeshi Live Poultry Markets: Pathogenic Potential in Poultry and Mammalian Models. *J Virol* **94**, (2020).
- 229. Gabriel, G. *et al.* The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. *Proc Natl Acad Sci U S A* **102**, 18590–18595 (2005).
- 230. Gabriel, G. *et al.* Differential Polymerase Activity in Avian and Mammalian Cells Determines Host Range of Influenza Virus. *J Virol* **81**, 9601–9604 (2007).
- 231. Sun, H. *et al.* PB2 segment promotes high-pathogenicity of H5N1 avian influenza viruses in mice. *Front Microbiol* **6**, 125579 (2015).
- 232. Welkers, M. R. A. *et al.* Genetic diversity and host adaptation of avian H5N1 influenza viruses during human infection. *Emerg Microbes Infect* **8**, 262–271 (2019).
- 233. Wang, B. *et al.* Characterization of a reassortant H11N9 subtype avian influenza virus isolated from spot-billed duck in China. *Virus Genes* **59**, 604–612 (2023).
- 234. Leung, B. W., Chen, H. & Brownlee, G. G. Correlation between polymerase activity and pathogenicity in two duck H5N1 influenza viruses suggests that the polymerase contributes to pathogenicity. *Virology* **401**, 96–106 (2010).
- 235. Chen, S. *et al.* Deep sequencing of the transcriptome from murine lung infected with H5N8 subtype avian influenza virus with combined substitutions I283M and K526R in PB2 gene. *Infect Genet Evol* **87**, (2021).
- 236. Li, J. *et al.* Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2. *Virus Res* **144**, 123–129 (2009).
- 237. Wang, J. *et al.* Mouse-Adapted H9N2 Influenza A Virus PB2 Protein M147L and E627K Mutations Are Critical for High Virulence. *PLoS One* **7**, e40752 (2012).
- 238. Fan, S. *et al.* Novel residues in avian influenza virus PB2 protein affect virulence in mammalian hosts. *Nature Communications 2014 5:1* **5**, 1–12 (2014).
- 239. Yang, H. *et al*. The influenza virus PB2 protein evades antiviral innate immunity by inhibiting JAK1/STAT signalling. *Nat Commun* **13**, (2022).
- 240. Zhou, Y. *et al.* V292I mutation in PB2 polymerase induces increased effects of E627K on influenza H7N9 virus replication in cells. *Virus Res* **291**, (2021).
- 241. Wang, P. *et al.* The PB2 Polymerase Host Adaptation Substitutions Prime Avian Indonesia Sub Clade 2.1 H5N1 Viruses for Infecting Humans. *Viruses* **11**, (2019).

- 242. Zhu, W., Zou, X., Zhou, J., Tang, J. & Shu, Y. Residues 41V and/or 210D in the NP protein enhance polymerase activities and potential replication of novel influenza (H7N9) viruses at low temperature Influenza viruses. *Virol J* **12**, 1–5 (2015).
- 243. Wang, X. *et al.* Amino acid mutations PB1-V719M and PA-N444D combined with PB2-627K contribute to the pathogenicity of H7N9 in mice. *Vet Res* **55**, 86 (2024).
- 244. Tsai, S. K. *et al.* Replication of a Dog-Origin H6N1 Influenza Virus in Cell Culture and Mice. *Viruses* **12**, (2020).
- 245. Czudai-Matwich, V., Otte, A., Matrosovich, M., Gabriel, G. & Klenk, H.-D. PB2 Mutations D701N and S714R Promote Adaptation of an Influenza H5N1 Virus to a Mammalian Host. *J Virol* **88**, 8735–8742 (2014).
- 246. Elgendy, E. M. *et al.* Identification of polymerase gene mutations that affect viral replication in H5N1 influenza viruses isolated from pigeons. *Journal of General Virology* **98**, 6–17 (2017).
- 247. Hulse-Post, D. J. *et al.* Molecular Changes in the Polymerase Genes (PA and PB1) Associated with High Pathogenicity of H5N1 Influenza Virus in Mallard Ducks. *J Virol* **81**, 8515–8524 (2007).
- 248. Liu, T. *et al.* A Characterization and an Evolutionary and a Pathogenicity Analysis of Reassortment H3N2 Avian Influenza Virus in South China in 2019-2020. *Viruses* **14**, (2022).
- 249. Xu, C. *et al.* Amino acids 473v and 598p of PB1 from an avian-origin influenza A virus contribute to polymerase activity, especially in mammalian cells. *Journal of General Virology* **93**, 531–540 (2012).
- 250. Kamiki, H. *et al*. A PB1-K577E Mutation in H9N2 Influenza Virus Increases Polymerase Activity and Pathogenicity in Mice. *Viruses 2018, Vol. 10, Page* 653 **10**, 653 (2018).
- 251. Feng, X. *et al.* Glycine at Position 622 in PB1 Contributes to the Virulence of H5N1 Avian Influenza Virus in Mice. *J Virol* **90**, 1872–1879 (2016).
- 252. Salomon, R. *et al*. The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. *J Exp Med* **203**, 689 (2006).
- 253. Conenello, G. M., Zamarin, D., Perrone, L. A., Tumpey, T. & Palese, P. A Single Mutation in the PB1-F2 of H5N1 (HK/97) and 1918 Influenza A Viruses Contributes to Increased Virulence. *PLoS Pathog* **3**, e141 (2007).
- 254. Schmolke, M. *et al.* Differential Contribution of PB1-F2 to the Virulence of Highly Pathogenic H5N1 Influenza A Virus in Mammalian and Avian Species. *PLoS Pathog* **7**, e1002186 (2011).
- 255. Marjuki, H. *et al.* Three amino acid changes in PB1-F2 of highly pathogenic H5N1 avian influenza virus affect pathogenicity in mallard ducks. *Arch Virol* **155**, 925–934 (2010).
- 256. Clements, A. L. *et al.* Contribution of Segment 3 to the Acquisition of Virulence in Contemporary H9N2 Avian Influenza Viruses. *J Virol* **94**, (2020).
- 257. Yang, H. *et al.* The synergistic effect of residues 32T and 550L in the PA protein of H5 subtype avian influenza virus contributes to viral pathogenicity in mice. *PLoS Pathog* **19**, (2023).
- 258. Hu, M. *et al.* PAnsubstitutions A37s, A37S/I61T and A37S/V63I attenuate the replication of H7N7 influenza a virus by impairing the polymerase and endonuclease activities. *Journal of General Virology* **98**, 364–373 (2017).
- 259. Hu, M. *et al.* Amino acid substitutions V63I or A37S/I61T/V63I/V100A in the PA N-terminal domain increase the virulence of H7N7 influenza A virus. *Scientific Reports 2016 6:1* **6**, 1–11 (2016).

- 260. Song, M.-S. *et al.* The Polymerase Acidic Protein Gene of Influenza A Virus Contributes to Pathogenicity in a Mouse Model. *J Virol* **83**, 12325–12335 (2009).
- 261. Cheng, K. *et al.* PB2-E627K and PA-T97I substitutions enhance polymerase activity and confer a virulent phenotype to an H6N1 avian influenza virus in mice. *Virology* **468–470**, 207–213 (2014).
- 262. Zhuang, Y. *et al.* First Known Human Death After Infection With the Avian Influenza A/H3N8 Virus: Guangdong Province, China, March 2023. *Clin Infect Dis* **78**, 646–650 (2024).
- 263. Xu, G. *et al.* Prevailing PA Mutation K356R in Avian Influenza H9N2 Virus Increases Mammalian Replication and Pathogenicity. *J Virol* **90**, 8105–8114 (2016).
- 264. Mostafa, A. *et al.* PA from a Recent H9N2 (G1-Like) Avian Influenza a Virus (AIV) Strain Carrying Lysine 367 Confers Altered Replication Efficiency and Pathogenicity to Contemporaneous H5N1 in Mammalian Systems. *Viruses* **12**, (2020).
- 265. Song, J., Xu, J., Shi, J., Li, Y. & Chen, H. Synergistic Effect of S224P and N383D Substitutions in the PA of H5N1 Avian Influenza Virus Contributes to Mammalian Adaptation. *Scientific Reports 2015 5:1* **5**, 1–7 (2015).
- 266. Song, J. *et al.* The PA Protein Directly Contributes to the Virulence of H5N1 Avian Influenza Viruses in Domestic Ducks. *J Virol* **85**, 2180–2188 (2011).
- 267. Tammiranta, N. *et al.* Highly pathogenic avian influenza A (H5N1) virus infections in wild carnivores connected to mass mortalities of pheasants in Finland. *Infect Genet Evol* **111**, (2023).
- 268. Zhong, G. *et al.* Mutations in the PA Protein of Avian H5N1 Influenza Viruses Affect Polymerase Activity and Mouse Virulence. *J Virol* **92**, (2018).
- 269. Zhao, H. *et al.* Novel residues in the PA protein of avian influenza H7N7 virus affect virulence in mammalian hosts. *Virology* **498**, 1–8 (2016).
- 270. Liang, L. *et al.* Low polymerase activity attributed to PA drives the acquisition of the PB2 E627K mutation of H7N9 avian influenza virus in mammals. *mBio* **10**, (2019).
- 271. Yamaji, R. *et al.* Mammalian Adaptive Mutations of the PA Protein of Highly Pathogenic Avian H5N1 Influenza Virus. *J Virol* **89**, 4117–4125 (2015).
- 272. Hu, J. *et al.* PA-X Decreases the Pathogenicity of Highly Pathogenic H5N1 Influenza A Virus in Avian Species by Inhibiting Virus Replication and Host Response. *J Virol* **89**, 4126–4142 (2015).
- 273. Gao, H. *et al.* The contribution of PA-X to the virulence of pandemic 2009 H1N1 and highly pathogenic H5N1 avian influenza viruses. *Scientific Reports 2015 5:1* **5**, 1–11 (2015).
- 274. Gao, H. *et al.* Twenty amino acids at the C-terminus of PA-X are associated with increased influenza A virus replication and pathogenicity. *Journal of General Virology* **96**, 2036–2049 (2015).
- 275. Gao, H. *et al.* PA-X is a virulence factor in avian H9N2 influenza virus. *Journal of General Virology* **96**, 2587–2594 (2015).
- 276. Nogales, A. *et al.* Natural Selection of H5N1 Avian Influenza A Viruses with Increased PA-X and NS1 Shutoff Activity. *Viruses* **13**, (2021).
- 277. Sun, Y. *et al.* An R195K Mutation in the PA-X Protein Increases the Virulence and Transmission of Influenza A Virus in Mammalian Hosts. *J Virol* **94**, (2020).
- 278. Chen, L. *et al.* Amino acid substitution K470R in the nucleoprotein increases the virulence of H5N1 influenza A virus in mammals. *Front Microbiol* **8**, 272226 (2017).
- 279. Tada, T. *et al.* NP Body Domain and PB2 Contribute to Increased Virulence of H5N1 Highly Pathogenic Avian Influenza Viruses in Chickens. *J Virol* **85**, 1834–1846 (2011).

- 280. Tada, T. *et al.* Emergence of Avian Influenza Viruses with Enhanced Transcription Activity by a Single Amino Acid Substitution in the Nucleoprotein during Replication in Chicken Brains. *J Virol* **85**, 10354–10363 (2011).
- 281. Wasilenko, J. L., Sarmento, L. & Pantin-Jackwood, M. J. A single substitution in amino acid 184 of the NP protein alters the replication and pathogenicity of H5N1 avian influenza viruses in chickens. *Arch Virol* **154**, 969–979 (2009).
- 282. Gabriel, G., Herwig, A. & Klenk, H. D. Interaction of Polymerase Subunit PB2 and NP with Importin α1 Is a Determinant of Host Range of Influenza A Virus. *PLoS Pathog* **4**, e11 (2008).
- 283. Soda, K., Sakita, M., Usui, T., Ito, H. & Ito, T. H5N8 avian influenza virus acquires enhanced pathogenicity after a single passage in chicken. *Vet Microbiol* **237**, (2019).
- 284. Ma, S. *et al*. Amino Acid Mutations A286V and T437M in the Nucleoprotein Attenuate H7N9 Viruses in Mice. *J Virol* **94**, (2020).
- 285. Jiao, P. *et al*. A Single-Amino-Acid Substitution in the NS1 Protein Changes the Pathogenicity of H5N1 Avian Influenza Viruses in Mice. *J Virol* **82**, 1146–1154 (2008).
- 286. Kanrai, P. *et al.* Identification of specific residues in avian influenza a virus NS1 that enhance viral replication and pathogenicity in mammalian systems. *Journal of General Virology* **97**, 2135–2148 (2016).
- 287. Trapp, S. *et al.* Shortening the unstructured, interdomain region of the non-structural protein NS1 of an avian H1N1 influenza virus increases its replication and pathogenicity in chickens. *Journal of General Virology* **95**, 1233–1243 (2014).
- 288. Chen, S. *et al.* H5N1 avian influenza virus without 80-84 amino acid deletion at the NS1 protein hijacks the innate immune system of dendritic cells for an enhanced mammalian pathogenicity. *Transbound Emerg Dis* **68**, 2401–2413 (2021).
- Long, J. X., Peng, D. X., Liu, Y. L., Wu, Y. T. & Liu, X. F. Virulence of H5N1 avian influenza virus enhanced by a 15-nucleotide deletion in the viral nonstructural gene. *Virus Genes* 36, 471– 478 (2008).
- 290. Wang, B. X., Wei, L., Kotra, L. P., Brown, E. G. & Fish, E. N. A Conserved Residue, Tyrosine (Y) 84, in H5N1 Influenza A Virus NS1 Regulates IFN Signaling Responses to Enhance Viral Infection. *Viruses 2017, Vol. 9, Page 107* 9, 107 (2017).
- 291. Heui Seo, S. *et al.* Addendum: Editorial note: Lethal H5N1 influenza viruses escape host antiviral cytokine responses. *Nature Medicine 2012 18:10* **18**, 1592–1592 (2012).
- 292. Lipatov, A. S. *et al.* Pathogenesis of Hong Kong H5N1 influenza virus NS gene reassortants in mice: The role of cytokines and B- and T-cell responses. *Journal of General Virology* **86**, 1121–1130 (2005).
- 293. Ayllon, J. *et al.* A Single Amino Acid Substitution in the Novel H7N9 Influenza A Virus NS1 Protein Increases CPSF30 Binding and Virulence. *J Virol* **88**, 12146–12151 (2014).
- 294. Li, J. *et al.* Three amino acid substitutions in the NS1 protein change the virus replication of H5N1 influenza virus in human cells. *Virology* **519**, 64–73 (2018).
- 295. Li, Z. *et al.* The NS1 Gene Contributes to the Virulence of H5N1 Avian Influenza Viruses. *J Virol* **80**, 11115–11123 (2006).
- 296. Chung, Y. T. *et al.* A variant NS1 protein from H5N2 avian influenza virus suppresses PKR activation and promotes replication and virulence in mammals. *Emerg Microbes Infect* **11**, 2291–2303 (2022).
- 297. Kuo, R.-L. & Krug, R. M. Influenza A Virus Polymerase Is an Integral Component of the CPSF30-NS1A Protein Complex in Infected Cells. *J Virol* **83**, 1611–1616 (2009).

- 298. Spesock, A. *et al.* The Virulence of 1997 H5N1 Influenza Viruses in the Mouse Model Is Increased by Correcting a Defect in Their NS1 Proteins. *J Virol* **85**, 7048–7058 (2011).
- 299. Imai, H. *et al.* The HA and NS Genes of Human H5N1 Influenza A Virus Contribute to High Virulence in Ferrets. *PLoS Pathog* **6**, e1001106 (2010).
- 300. Trapp, S. *et al.* Major contribution of the RNA-binding domain of NS1 in the pathogenicity and replication potential of an avian H7N1 influenza virus in chickens. *Virol J* **15**, 1–12 (2018).
- 301. Zielecki, F. *et al.* Virulence Determinants of Avian H5N1 Influenza A Virus in Mammalian and Avian Hosts: Role of the C-Terminal ESEV Motif in the Viral NS1 Protein. *J Virol* **84**, 10708–10718 (2010).
- 302. Keiner, B. *et al.* Intracellular Distribution of NS1 Correlates with the Infectivity and Interferon Antagonism of an Avian Influenza Virus (H7N1). *J Virol* **84**, 11858–11865 (2010).
- 303. Soubies, S. M. *et al.* Deletion of the C-terminal ESEV domain of NS1 does not affect the replication of a low-pathogenic avian influenza virus H7N1 in ducks and chickens. *Journal of General Virology* **94**, 50–58 (2013).
- 304. Jackson, D., Hossain, M. J., Hickman, D., Perez, D. R. & Lamb, R. A. A new influenza virus virulence determinant: The NS1 protein four C-terminal residues modulate pathogenicity. *Proc Natl Acad Sci U S A* **105**, 4381–4386 (2008).
- 305. Soubies, S. M. *et al.* Species-Specific Contribution of the Four C-Terminal Amino Acids of Influenza A Virus NS1 Protein to Virulence. *J Virol* **84**, 6733–6747 (2010).
- Kong, W. et al. C-terminal elongation of NS1 of H9N2 influenza virus induces a high level of inflammatory cytokines and increases transmission. *Journal of General Virology* 96, 259– 268 (2015).
- Reuther, P. *et al.* Adaptive Mutations in the Nuclear Export Protein of Human-Derived H5N1 Strains Facilitate a Polymerase Activity-Enhancing Conformation. *J Virol* 88, 263–271 (2014).
- 308. Guo, J. *et al.* SUMOylation of Matrix Protein M1 and Filamentous Morphology Collectively Contribute to the Replication and Virulence of Highly Pathogenic H5N1 Avian Influenza Viruses in Mammals. *J Virol* **96**, (2022).
- 309. Fan, S. *et al.* Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. *Virology* **384**, 28–32 (2009).
- 310. Wang, C. *et al.* Enhanced stability of M1 protein mediated by a phospho-resistant mutation promotes the replication of prevailing avian influenza virus in mammals. *PLoS Pathog* **18**, (2022).
- 311. Nao, N. *et al.* A Single Amino Acid in the M1 Protein Responsible for the Different Pathogenic Potentials of H5N1 Highly Pathogenic Avian Influenza Virus Strains. *PLoS One* **10**, e0137989 (2015).
- 312. Lin, L. *et al.* TRIM21 restricts influenza A virus replication by ubiquitination-dependent degradation of M1. *PLoS Pathog* **19**, (2023).
- 313. Hui, X. *et al.* PSMD12-Mediated M1 Ubiquitination of Influenza A Virus at K102 Regulates Viral Replication. *J Virol* **96**, (2022).
- 314. Abed, Y., Goyette, N. & Boivin, G. Generation and characterization of recombinant influenza A (H1N1) viruses harboring amantadine resistance mutations. *Antimicrob Agents Chemother* **49**, 556–559 (2005).

- 315. Lan, Y. *et al.* A Comprehensive Surveillance of Adamantane Resistance among Human Influenza a Virus Isolated from Mainland China between 1956 and 2009. *https://doi.org/10.3851/IMP1656* **15**, 853–859 (2010).
- 316. Threlkeld, S. C. & Webster, R. G. Biologic Potential of Amantadine-Resistant Influenza A Virus in an Avian Model. *J Infect Dis* **159**, 1050–1056 (1989).
- 317. Cheung, C. L. *et al.* Distribution of amantadine-resistant H5N1 avian influenza variants in Asia. *Journal of Infectious Diseases* **193**, 1626–1629 (2006).
- 318. Ilyushina, N. A., Govorkova, E. A. & Webster, R. G. Detection of amantadine-resistant variants among avian influenza viruses isolated in North America and Asia. *Virology* **341**, 102–106 (2005).
- 319. He, G. *et al*. Amantadine-resistance among H5N1 avian influenza viruses isolated in Northern China. *Antiviral Res* **77**, 72–76 (2008).
- 320. Puthavathana, P. *et al.* Molecular characterization of the complete genome of human influenza H5N1 virus isolates from Thailand. *Journal of General Virology* **86**, 423–433 (2005).
- 321. Buranathai, C. *et al.* Surveillance Activities and Molecular Analysis of H5N1 Highly Pathogenic Avian Influenza Viruses from Thailand, 2004–2005. *Avian Dis* **51**, 194–200 (2007).
- 322. Ren, W. *et al.* Two genetically similar H9N2 influenza viruses isolated from different species show similar virulence in minks but different virulence in mice. *Acta Virol* **64**, 67–77 (2020).
- 323. Wang, F. *et al.* Identification of Hemagglutinin Mutations Caused by Neuraminidase Antibody Pressure. *Microbiol Spectr* **9**, (2021).
- 324. Zhang, C. *et al.* Risk of Environmental Exposure to H7N9 Influenza Virus via Airborne and Surface Routes in a Live Poultry Market in Hebei, China. *Front Cell Infect Microbiol* **11**, (2021).
- 325. Qu, B., Li, X., Cardona, C. J. & Xing, Z. Reassortment and adaptive mutations of an emerging avian influenza virus H7N4 subtype in China. *PLoS One* **15**, (2020).
- 326. Agüero, M. *et al.* Highly pathogenic avian influenza A(H5N1) virus infection in farmed minks, Spain, October 2022. *Euro Surveill* **28**, (2023).
- 327. Rabalski, L. *et al.* Emergence and potential transmission route of avian influenza A (H5N1) virus in domestic cats in Poland, June 2023. *Euro Surveill* **28**, (2023).